PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aspects of nanomaterials for civil and military applications. Part 2. Their use and concerns arising from their release into the natural environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Aspekty nanomateriałów w zastosowaniach cywilnych i militarnych. Cz. 2. Wykorzystanie i obawy wynikające z ich uwalniania do środowiska przyrodniczego
Języki publikacji
EN
Abstrakty
EN
The dynamic development of nanoscience and nanotechnology has led to revolutionary changes in many areas of science and industry, raising a great deal of hope for its potential to solve a wide range of problems of the modern world. Nanomaterials, also referred to as engineered nanoparticles are a product of nanotechnology and, compared to macro-particles, show unique physical, chemical, biological and mechanical properties which significantly extend the range of practical applications. The paper presents the applicability of engineered nanoparticles in the defence industry and concerns related to their release into the environment.
PL
Dynamiczny rozwój nanonauki i nanotechnologii sprawił, że w wielu dziedzinach nauki i w sektorach przemysłu zachodzą rewolucyjne zmiany budząc ogromne nadzieje na potencjalną możliwość rozwiązania całego szeregu istotnych problemów współczesnego świata. Nanostrukturalne materiały określane też mianem nanocząstek inżynierskich stanowiące produkt nanotechnologii wykazują w porównaniu do swoich odpowiedników w skali makro unikatowe właściwości fizyczne, chemiczne, biologiczne i mechaniczne. Wszystko to sprawia, że znajdują one coraz szersze praktyczne zastosowanie. W pracy zaprezentowano możliwości stosowania nanocząstek inżynierskich ze szczególnym uwzględnieniem sektora obronnego oraz obawy wynikające z ich uwalniania do środowiska przyrodniczego.
Rocznik
Tom
Strony
17--36
Opis fizyczny
Bibliogr. 254 poz., rys., tab.
Twórcy
  • University of Economics and Business, Faculty of Commodity Science, 10 Niepodległości Avenue, 61-875 Poznań, Poland
  • Łukasiewicz Research Network – Institute of Non-Ferrous Metals in Gliwice, Poznań Branch, 12 Forteczna Street, 61-362 Poznań, Poland
  • Military University of Technology, 2 gen. S Kaliskiego Street, 00-908 Warsaw, Poland
  • Adam Mickiewicz University, Faculty of Chemistry, 89b Umultowska Street, 61-614 Poznań, Poland
Bibliografia
  • [1] Nanomaterials and Nanochemistry. Bréchignac C., Houdy P., Lahmani M. Eds., Berlin/Heidelberg: Springer-Verlag, 2001.
  • [2] Nanomaterials: Synthesis, Properties and Applications. Edelstein A.S., Cammaratra R.C. Eds., London:Taylor & Francis, 1998.
  • [3] Nanostructured Materials. Selected Synthesis Methods, Properties and Application. Knauth Ph., Schoonman J. Eds., Kluwer, 2004.
  • [4] Nanoscale Materials in Chemistry. Klabunde K.J. Ed., New York: J. Willey, 2008.
  • [5] Vollath D. Nanomaterials: An Introduction to Synthesis, Properties and Application. Weinheim: J. Willey-VCH, 2008.
  • [6] Cadermartini L., Ozin G.A. General Nanochemistry. Concepts. (in Polish) Warsaw: PWN, 2011.
  • [7] Tang Z., Sheng P. Nanoscale Phenomena, Basic Science to Device Applications. Berlin/Heidelberg:Springer-Verlag, 2008.
  • [8] Gullapalli S., Wong M.S. Nanotechnology: A Guide to Nano-objects. Chem. Eng. Prog. 2011, 107(5):28-32.
  • [9] Ostrikov K., Neyts E.C., Meyyappan M. Plasma Nanoscience: from Nano-solids in Plasmas to Nanoplasmas in Solids. Adv. Phys. 2013, 62: 113-224.
  • [10] Tjong S.C., Chen H. Nanocrystalline Materials and Coatings. Mater. Sci. Eng. 2004, 45(1-2): 1-88.
  • [11] Prior M.H. Size Reduction, Principles of Powder Technology. Rhodes M. Ed., Chichester: J. Willey, 1990.
  • [12] Ramsden J.J. Applied Nanotechnology. 1st ed., Elsevier, 2012.
  • [13] Kelsal R.W., Hamley I.W., Geoghegan M. Nanotechnologies. (in Polish) Warsaw: PWN, 2008.
  • [14] Taniguchi N. Nanotechnology. Integral Processing Systems for Ultra Precision and Ultra-fine Products. Oxford: Oxford Science Publishing, 1996.
  • [15] Manalis A.G. Recent Advances in Nanotechnology. J. Mater. Process. Technol. 2007, 18(1-3): 52-58.
  • [16] Ramsden J.J. Nanotechnology for Military Applications. Nanotechnol. Perceptions 2012, 8: 99-131.
  • [17] Kurzydłowski K., Lewandowska M. Engineered Structural and Functional Nanomaterials. (in Polish) Warsaw: PWN, 2010.
  • [18] Christian P., van der Kammer F., Baalousha M., Hofmann T. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology 2008, 17(5): 326-343.
  • [19] Zarko V., Gromow A. Energetic Nanomaterials. Characterization and Application. 1st ed., Elsevier, 2016.
  • [20] Kohler M., Fritzsche W. Nanotechnology, An Introduction to Nanostructuring Techniques. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007.
  • [21] Pang S.C., Kho S.Y., Chin S.F. Fabrication of Magnetite/Silica/Titania Core Shell Nanoparticles. J. Nanomater. 2012, 20: 1-6.
  • [22] Aumann C.E., Skofronick G.L., Martin J.A. Oxidation Behavior of Aluminum Nanopowders. J. Vac. Sci. Technol., B 1995, 13(2): 1178-1183.
  • [23] Thostenson E., Li C., Chou T. Nanocomposites in Context. Compos. Sci. Technol. 2005, 65(3-4): 491-516.
  • [24] Gash A.E., Simpson R.L., Tillotson T.M., Satcher J.H., Hrubesh L.W. Making Nanostructured Pyrotechnics in a Beaker. Proc. 27th Int. Pyrotechnic Sem., Grand Junction, Colorado, 2000, 41-53.
  • [25] Martin J.A., Muray A.S., Busse J.R. Metastable Intermolecular Composites. Warhead Technol. 1998, 179-191.
  • [26] Foltynowicz Z. New Trends in Industrial Commodity Science. [in:] Packaging Commodity Science – Logistics), (in Polish) Foltynowicz Z., Jasiczak J., Szyszka G. Eds., Poznań: Poznań University of Economics and Business, 2008, 58-72.
  • [27] Pietrzak R., Wachowski L. Areas of Potential Practical Applications of Nanomaterials. [in:] Waste and Packaging – New Legal Regulations and Obligations. (in Polish) Wachowski L. Ed., Poznań: Explanator, 2013, Ch. 1/6, pp. 1-15.
  • [28] Nanotechnology Market 2017 Share, Trend, Segmentation and Forecast to 2020. https://www.einpresswire.com/article/370346275/nanotechnology-market-2017-share-trend-segmentation-and-forecast-to-2020 [retrieved 20.11.2017].
  • [29] Project on Emerging Nanotechnologies. An Inventory of Nanotechnology-based Consume Products Currently on the Market. Woodrow Wilson International Centre for Scholars. http://www. nanotechproject.org/inventories/consumer/ [retrieved 04.2011].
  • [30] Vance M.E., Kuiken T., Vejerano E.P., McGinnis S.P., Hochella Jr. M.F., Rejeski D., Hull M. Nanotechnology in the Real World: Redeveloping the Nanomaterial Consumer Products Inventory. Beilstein J. Nanotechnol. 2015, 6: 1769-1780.
  • [31] New Nanotech Products Hitting the Market at the Rate of 3-4 Per Week. http://www.nanotechproject.org/news/archive/6697/ [retrieved 20.11.2017].
  • [32] Puszyński J.A. Advances in the Formation of Metallic and Ceramic Nanopowders. [in:] Powder Materials: Current Research and Industrial Practices. 2000, 89-105.
  • [33] Shenhar R., Rotello V.M. Nanoparticles: Scaffolds and Building Blocks. Acc. Chem. Res. 2003, 36:549-561.
  • [34] Yaghmaee M.S., Shokri B., Rahimipour M.R. Size Dependence Surface Activity of Metallic Nanoparticles Plasma Processes. Polym. 2009, 6: 876-832.
  • [35] Gromov A., Ilyin A., Förter-Barth U., Teipel U. Characterization of Aluminum Powders: Aluminum Nanopowders Passivated by Non-inert Coatings. Propellants Explos. Pyrotech. 2007, 31(4): 401-409.
  • [36] Aumann C.E., Skofronick G.L., Martin J.A. Oxidation Behavior of Aluminum Nanopowders. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 1995, 13(3): 1178-1183;https://doi.org/10.1116/1.588232.
  • [37] Cliff M., Tepper F., Lisetsky V. Ageing Characteristics of Alex® Nanosize Aluminum. AIAA Proc. 37th Joint Propulsion Meeting, Salt Lake City, 2001, 3287.
  • [38] Nanomaterials: Moving towards stabilization. Eur. Business Rev. 2011, (July-August): 70-72.
  • [39] Klapötke T.M. Chemistry of High-Energy Materials. Berlin: Walter de Gruyter, 2011;ISBN 978-3110273588.
  • [40] Berner M.K., Zarko V.E., Talawar M.B. Nanoparticles of Energetic Materials: Synthesis and Properties. Combust. Explos. Shock Waves 2013, 49(6): 625-647.
  • [41] Teipel U. Energetic Materials: Particle Processing and Characterization. Weinheim: Wiley-VCH, 2005; ISBN 978-3-527-30240-6.
  • [42] Huber D.L. Synthesis, Properties, and Applications of Iron Nanoparticles. Small 2005, 1(5): 482-501.
  • [43] Koplowitz D.A., Jiang G.Q., Gaskell K. Synthesis and Reactive Properties of Iron Oxides Coated Nanoaluminum. J. Energ. Mater. 2014, 32(2): 95-105.
  • [44] Karagedov G.R, Lyakhov N.Z. Production and Sintering of a Nanocrystalline Powder of α-Al2O3. Khim. Interes. Ust. Razv. 1999, 7(3): 229-238.
  • [45] Przybyszewska M., Zaborski M. Nanoparticle Zinc Oxide, Synthesis, Properties and Applications. (in Polish) Przem. Chem. 2009, 88(2): 154-161.
  • [46] Polizzi S., Battagliarin M., Bettinelli M., Speghini A., Fagherazzi G. Investigation on Lanthanide-doped Y2O3 Nanopowders Obtained by Wet Chemical Synthesis. J. Mater. Chem. 2002, 12: 742-747.
  • [47] Stöber W. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26: 62-69.
  • [48] Wang Y.P., Zhu W.J. Yang X.P., Lu L.D., Wang X. Preparation of NiO Nanoparticles and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate. Termochim. Acta 2005, 437(1-2):105-109.
  • [49] Gusew A.I. Nanocrystalline Materials: Synthesis and Properties. [in:] Dekker Encyclopedia Nanoscience and Nanotechnology. Vol. 4, New York/Boca Raton: Francis & Taylor, 2009, 2621.
  • [50] Gash A.E., Tillotson T.M. Poco J.F., Satcher Jr. J.H., Hrubesh L.W., Simpson, R.L. New Sol-gel Synthetic Route to Transition and Main-group Metal Oxide Aerogels Using Inorganic Salt Precursors. J. Non-Cryst. Solids 2001, 285: 22-28.
  • [51] Jurczyk M., Jakubowicz J. Ceramic Nanomaterials. (in Polish) Poznań: Wyd. Politechniki Poznańskiej, 2004; ISBN 8371435436.
  • [52] Chemistry of advanced materials. Interante L.V., Hampten-Smith M.J. Eds., New York: Willey VCH, 1998.
  • [53] Lach E., Wolf T., Scharf M. Submicro and Nano Ceramic as Ballistic Protective Material. Mechanic 2015, 88(2): 45-56.
  • [54] Rosenberg Z., Dekel E. Terminal Ballistics. Heidelberg: Springer Verlag, 2012.
  • [55] Jedliński Z. Novel Nanopolymers – Useful Drug Carriers for Medical Applications. Inżynieria Biomateriałów 2005, 47: 38-39.
  • [56] Aguilar J.O., Bautista-Quijano J.R., Aviles F. Influence of Carbon Nanotube Clustering on the Electrical Conductivity of Polymer Composite. eXPRESS Polymer Lett. 2010, 4(5): 292-299.
  • [57] Tsay T.Y. Polyethylene Terephtalate Clay Nanocomposite. [in:] Polymer-clay Nanocomposite. Pinavaia T.J., Beek G.W. Eds., Chichester: Willey Ltd., 2000.
  • [58] Theny B.K.G. Formulation and Properties of Clay-Polymer Complexes. Elsevier, 1979.
  • [59] Glebov E., Yuan L., Kishtopa L. Coating of Metal Powders with Polymers in Supercritical Carbon Dioxide. Ind. Chem. Res. 2001, 40(19): 4057-4068.
  • [60] http://moto.pl/MotoPL/1,88389,19038388,porsche-tequipment-metamorfoza-uzywanej-911-ki.html (in Polish) [retrieved 24.11.2017].
  • [61] Zao S., Malfait J., Demilecan A., Zhang Y., Brunner S., Huber L., Tigmant P., Rigacci T., Bultova T., Koelbel M.M. Strong Thermally Insulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silica Acid with Pectin. Angew. Chem. Int. Ed. 2015, 54: 14282-14286.
  • [62] Sakiyama-Elbert S.E., Hubbell J. Functional Biomaterials: Design of Novel Biomaterials. Ann. Rev. Mater. Res. 2001, 31: 183-201.
  • [63] Stodolak-Zych E., Frączek-Szczypta A., Błażewicz M. Polymer-Ceramic Nanocomposites in Bone Surgery. (in Polish) Materiały Kompozytowe Stosowane w Przemyśle 2011, 3: 54-58.
  • [64] Stodolak-Zych E., Gadomska K., Łącz A., Boguń M. Polymer-Ceramic Composition for Application in the Bone Surgery. J. Phys. Conf. Ser. 2009, 146(1): 1-6.
  • [65] Bordes P., Pollet E., Averous L. Nano Biocomposites: Biopolimer Polyester Nanoclay. Science 2009, 34(2): 125-155.
  • [66] Popov V.N. Carbon Nanotubes: Properties and Applications. Mat. Sci. Eng. R. 2004, 43(3): 61-102.
  • [67] Collins P.G. Nanotubes for Electronics. Sci. Am. 2000: 67-69.
  • [68] Hong S., Myung S. Nanotube Electronics: A Flexible Approach to Mobility. Nat. Nanotechnol. 2007, 2(4): 207-208.
  • [69] Charlie J.C., Roche S. Electronic and Transport Properties of Nanotubes. Rev. Mod. Phys. 2007, 79(2): 677-732.
  • [70] Wang X., Li Q., Xie J., Jin Z., Wang J., Li Y., Jiang K., Fan S. Fabrication of Ultralong and Electrically Uniform Single-walled Carbon Nanotubes on Clean Substrates. Nano Lett. 2009, 9(9): 3137-3141.
  • [71] Dekker C. Carbon Nanotubes as Molecular Quantum Wires. Phys. Today 1999, 52(5): 22-28.
  • [72] Menon M. Carbon Nanotube: Nanoscale Metal-Semiconductor-Metal Contact Devices. Phys. Rev. Lett. 1997, 79: 4453-4456.
  • [73] Smith B.W., Monthioux M.L., David E. Encapsulated C-60 in Carbon Nanotubes. Nature 1998, 396(6709): 323-324.
  • [74] Tang Z.K., Zhang L., Wang N., Zhang X.X., Wen G.H., Li G.D., Wang J.N., Chan C.T., Sheng P. Superconductivity in 4 Angstrom Single-walled Carbon Nanotubes. Science 2001, 292: 2462-2465.
  • [75] Takesue I., Haruyama J., Kobayashi N., Chiashi S., Maruyama S., Sugai T., Shinohara H. Superconductivity in Entirely End-bonded Multiwalled Carbon Nanotubes. Phys. Rev. Lett. 2006, 96(5): 057001.
  • [76] Star A. Nanotube Optoelectronic Memory Devices. Nano Lett. 2004, 4(9): 1587-1591.
  • [77] Karousis N., Tagmatarchis N., Tasis D. Current Progress on the Chemical Modification of Carbon Nanotubes. Chem. Rev. 2010, 110(9): 5366-5397.
  • [78] Pacios P.M. Carbon Nanotubes as Platforms for Biosensors with Electrochemical and Electronic Transduction. Heidelberg: Springer, 2012.
  • [79] Bratcher M., Pesce-Rodriguez R., Kaste P., Ramaswamy A.L. Nanotube Modification of Energetic Materials. Proc. 38th Meeting of the JANNAF Combustion Subcommittee, Destin, FL, 2002.
  • [80] Matthas L., Pulci O., Bechstedt F. Massive Dirac Quasiparticles in the Optical Absorbance of Graphene Silicene, Germane and Tinene. J. Phys. Condensed Matter. 2013, 25(39): 395-305.
  • [81] Roome N.J., Carrey J.D. Beyond Graphene: Stable Elements Monolayers of Silicen and Germanene. ACS Appl. Mater. Interf. 2014, 6(10): 7743-7750.
  • [82] Astruc D. Nanoparticles in Catalysis. Wiley VCH, 2008.
  • [83] Sarbak Z. Inorganic Nanoporous Materials. (in Polish) Poznań: Wyd. Nauk. UAM, 2010; ISBN 978-83-232-2004-6.
  • [84] Vollath D. Nanoparticles-Nanocomposites-Nanomaterials. Willey VCH, 2013.
  • [85] Hodge A.M., Balk T.J. Mechanical Properties of Nanoporous Gold. [in:] Nanoporous Gold: From an Ancient Technology to a High-Tech Material. Wittstock A., Biener J., Erlebacher J., Bäumer M. Eds., Royal Society of Chemistry, 2012, pp. 51-68; ISBN 978-1-84973-374-8.
  • [86] Wittstock A., Baumer M. Catalysis by Unsupported Skeletal Gold Catalysis. Acc. Chem. Res. 2014, 47: 731-739.
  • [87] Odrożek K., Maresz K., Koreniuk A., Mrowiec-Bidoń J. Gold Nanoparticles as Active Catalyst of Glucose Oxidation. (in Polish) Prace Naukowe Instytutu Inżynierii Chemicznej PAN 2013, 17: 105-115.
  • [88] Caroll M.K., Anderson A.M., Gorka C.A. Preparation Silica Aerogel via a Rapid Supercritical Extraction Method. J. Visualized Experiments 2014, 84: e51421.
  • [89] Zieliński R. Surfactants. Structure, Properties and Applications. (in Polish) 3rd ed., Poznań: Wyd. Uniwersytetu Ekonomicznego, 2017; ISBN 9788374179263.
  • [90] Lasoń E., Ogonowski J. Encapsulation in Cosmetics. (in Polish) Towaroznawcze Problemy Jakości 2010, 4(25): 97-105.
  • [91] Runowski M. Nanotechnology, Nanomaterials, Nanoparticles: Multifunctional Core/Shell Structure. CHEMIK 2014, 9: 764-769.
  • [92] Menon M. Carbon Nanotube: Nanoscale Metal-Semiconductor-Metal Contact Devices. Phys. Rev. Lett. 1997, 79: 4453-4456.
  • [93] Lu W., Lieber C.M. Nanoelectronics from the Bottom Up. Nat. Mater. 2007, 6: 841-850.
  • [94] Słoma M. Carbon Nanomaterials in Printed Circuit Boards. (in Polish) Warsaw: Wyd. Politechniki Warszawskiej, 2017.
  • [95] Margillo J.F. Nanotechnology 101. London: Greenwood Press, 2007.
  • [96] Advances Nanoengeneering, Materials and Assembly. [in:] Royal Society Series Advances in Science. Davies A.G., Thompson J.M.T. Eds., Vol. 3, Imperial College Press, 2007.
  • [97] Czerwińska M. Applications of Nanomaterials in Armaments Industry. (in Polish) CHEMIK 2014, 68(6): 536-543.
  • [98] Tiwari A. Military Nanotechnology. Int. J. Eng. Sci. Adv. Technol. 2012, 2(4): 825.
  • [99] McGovern C. Commoditization of Nanomaterials. Nanotechnol. Perceptions 2010, 6: 155-178.
  • [100] Nanomaterials: Moving towards Stabilization. Eur. Business Rev. 2011, July-August: 70-72.
  • [101] Nanotechnology in Construction. Bittnar Z., Bartos P.J.M., Nemecek J., Smilauer V., Zeman J. Eds., Springer Verlag, 2009; ISBN 978-3-642-00980-8.
  • [102] Fic S., Kłonica M., Szewczak X. Effect of Hydrophobization on the Durability of Building Ceramics. (in Polish) Polimery 2016, 61(1): 46-48.
  • [103] Czarnecki L. Nanotechnology in Construction Industry. (in Polish) Przegląd Budowlany 2007, 1: 40-53.
  • [104] Choma J., Dziura A., Jamioła D., Nyga P., Jaroniec M. Synthesis of Gold Nanoparticles on the Surface of Colloidal Silica. (in Polish) Ochrona Środowiska 2010, 32(3): 3-6.
  • [105] Choma J., Jedynak K., Górka J., Jaroniec M. Adsorption Properties of Mesoporous Carbons with Titanium Dioxide Nanoparticles Obtained in the Presence of Block Copolymers. (in Polish) Ochrona Środowiska 2010, 32(4): 3-9.
  • [106] Upadhyayula V.K.K., Deng S., Mithell M.C., Smith G.B. Application of Carbon Nanotube Technology for Removal of Contaminants in Drinking Water: A Review. Sci. Total Environ. 2009, 408(1): 1-13.
  • [107] Jiang C., Wang R., Ma W. The Effect of Magnetic Nanoparticles on Microcystis aeruginosa Removal by a Composite Coagulant. Colloids Surf., A 2010, 369(1-3): 260-267.
  • [108] Krishnaraj C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T., Mohan N. Synthesis of Silver Nanoparticles using Acalypha indica Leaf Extracts and Its Antibacterial Activity Against Water Borne Pathogens. Colloids Surf., B 2010, 76(1): 50-56.
  • [109] Płaza G., Kowalska E., J. Radomska J., Czerwosz E., Jangid K., Gawior K., Ulfig K., Janda-Ulfig K. The Effects of Multi-walled Carbon Nanotubes on Bacillus bacteria Growth and Production of Biosurfactants. (in Polish) Ochrona Środowiska 2009, 31(1): 21-24.
  • [110] Wang J., Zheng S., Shao Y., Liu J., Xu Z., Zhu D. Amino-Functionalized Fe3O4:SiO2 Core-Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal. J. Colloid Interface Sci. 2010, 349: 293-299.
  • [111] Qui X., Alvarez P.J.J., Li Q. Applications of Nanotechnology in Water and Water Treatment. Water Res. 2013, 47(12): 3931-3946.
  • [112] Gebhard A., Knör N., Haupert F., Schlarb A. Nanopartikelverstärkte Hochleistunsthermoplaste für extreme tribologische Belastungen im Automobilbau. Tribol. Schmierungstech. 2008, 55(4): 28-32.
  • [113] Quality Improvements of Technological Processes. (in Polish) Żaba K. Ed., Kraków: Wyd. Nauk. AKAPIT, 2012; ISBN 978-83-60958-95-7.
  • [114] Bąk Ł., Śliwiński T. Protective Coatings – Applications in Car Industry. (in Polish) Zesz. Nauk. Politechniki Śląskiej Ser. Transport 2013, 78: 5-12.
  • [115] Car Cosmetics. (in Polish) waw.myjauto.pl/category/29/ nanoterchnologia.html [retrieved 20.11.2017].
  • [116] Głód D., Adamczak M., Bednarski W. Selected Aspects of Using Nanomaterials in Food Production. (in Polish) Żywność, Nauka, Technologia, Jakość 2014, 5(96): 36-52.
  • [117] Rodewald D. Characteristics of Cosmetic Products Containing Nanosilver Available on the Polish Market. (in Polish) Conf. Mater. Interdisciplinary Scientific Conf. for PhD Students, Hradec Králové, Czech Rep., 2011.
  • [118] Goel A., Kapoor S., Raman R., Pascal R.M.J., Kim H.-W., Fetrrerina J.M.F. Alkali-free Bioactive Glasses for Bone Yissue Engineering: a Preliminary Investigation. Acta Biomater. 2012, 18(11): 361-372.
  • [119] Bioactive Glasses, Materials, Properties and Applications. Yanen H.O. Ed., Woolhead Pub. Ltd., 2011.
  • [120] Dagdeviren C., Yang B.C., Su Y., Tran P.L., Joe P., Anderson E., Xia J., Doraisany V., Dandeshti B., Feng X., Lu B., Poston R., Khalpe Z., Ghaffan R., Huang Y., Stepian M.J., Rogers J.A. Conformal Piezoelectric Energy Harvesting a Storage from Motions of Heart Lung and Diaphragm. Proc. Nat. Acad. Sci. USA (PNAS) 2014, 111(5): 1927-1932.
  • [121] Gourav G., Ankur K., Rahul T., Sachin K. Applications and Future of Composite Materials: Review. Int. J. Innovative Res. Sci., Eng. Technol. 2016, 5(5): 6908-6911.
  • [122] Tjong S.C., Chen H. Nanocrystalline Materials and Coatings. Mater. Sci. Eng. 2004, 45(1-2): 1-88.
  • [123] Wang F., Banerjee D., Liu Y., Chen X., Liu X. Upconversion Nanoparticles in Biological Labelling, Imaging, and Therapy. Analyst 2010, 135: 1839-1854.
  • [124] Liu L., Guo G., Jayanthi C., Wu S. Colossal Paramagnetic Moments in Metallic Carbon Nanotori. Phys. Rev. Lett. 2002, 88(21): 217206.
  • [125] Pacios P.M. Carbon Nanotubes as Platforms for Biosensors with Electrochemical and Electronic Transduction. Heidelberg: Springer, 2012.
  • [126] Maliński T. Nitric Oxide and Nitro Oxidative Stress in Alzheimer’s Disease. J. Alzheimer’s Dis. 2007, 11(2): 207-218.
  • [127] Kozak A., Liu F., Funovics A., Jacoby A., Kubant R., Maliński T. Role of Peroxynitrite in Process of Vascular Tore Regulation by Nitric Oxide and Prostanaids a Nanothechnological Approach. Prostaglandins Leukot. Essent. Fatty Acids 2005, 71: 105-113.
  • [128] Nano in Cosmetics and Personal Care. http://www.nanoandme.org/nano-products/cosmetics-andsunscreen/[retrieved 25.11.2017].
  • [129] Rodewald D., Foltynowicz Z. Nanocosmetics as a New Trend in Cosmetics Industry. (in Polish) Świat Przemysłu Kosmetycznego 2011, 4: 12-15.
  • [130] Makles Z. Nanomaterials – New Possibilities, New Hazards. (in Polish) Bezpieczeństwo Pracy 2005, 2:2-4.
  • [131] Rodewald D. Evaluation of Microbiological Resistance of Cosmetics in Nanosilver-modified Polymer Packaging. (in Polish) Doctoral Thesis, Poznań University of Economics and Business, 2014.
  • [132] Urbaniak W., Foltynowicz Z. Method for Obtaining Metal Nanoparticles Dispersed in the Inorganic Matrix. (in Polish) Patent PL 190289, 2005.
  • [133] Campos-Cuerva C., Zieba M., Sebastian V., Martínez G., Sese J., Irusta S., Contamina V., Arruebo M., Santamaria J. Screen-printed Nanoparticles as Anti-counterfeiting Tags. Nanotechnol. 2016, 27: 095702; DOI: 10.1088/0957-4484/27/9/095702.
  • [134] Jakubiak P., Foltynowicz Z. Cellulose Derivative-based Polymer Nanocomposites and Their Production Methods. Patent AE 2/2006, 2006.
  • [135] Jakubiak P., Foltynowicz Z. Polymer Nanocomposites – Modern Solutions for Packaging Market. (in Polish) Opakowanie 2004, 6: 6-12.
  • [136] Foltynowicz Z., Kozak W., Fiedorow R. Studies of Oxygen Uptake on O2 Scavengers Prepared from Different Iron-containing Parent Substances. Packag. Technol. Sci. 2002, 15: 1-7.
  • [137] Foltynowicz Z., Kozak W., Urbaniak W. Oxygen Scavenger and Method of Fabrication. (in Polish) Patent PL 19082, 2007.
  • [138] Foltynowicz Z., Bardenshtein B., Sängerlaub S., Antvorskov H., Kozak W. Nanoscale, Zero valent Iron Particles for Application as Oxygen Scavenger in Food Packaging. Food Packag. Shelf Life 2017, 11: 74-83; DOI: 10.1016/j.fpsl.2017.01.003.
  • [139] Frydrych E., Foltynowicz Z., Kowalak S. Non-metallic Oxygen Absorbent. (in Polish) Patent PL 215298, 2013.
  • [140] Foltynowicz Z., Kozak W., Stoińska J., Urbańska M. Method of Nano-Iron Production and Its Application in Oxygen Absorption in Packaging and Oxygen Scavengers. (in Polish) Patent PL 227585, 2017.
  • [141] Foltynowicz Z., Kozak W., Stoińska J., Urbańska M., Muc K., Forysiak A., Kublicka K. Nanoiron Based Oxygen Scavengers. Patent JP 6093713, 2017.
  • [142] Foltynowicz Z., Kozak W., Stoińska J., Urbańska M. Method of Nano-Iron Production and Its Application in Oxygen Absorption in Packaging and Oxygen Scavengers. (in Polish) Patent PL 227096, 2010.
  • [143] Foltynowicz Z., Kozak W., Stoińska J., Urbańska M., Muc K., Kublicka K. Nanocomposite Oxygen Scavenger. (in Polish) Patent PL 397499, 2011.
  • [144] Foltynowicz Z., Kozak W., Stoińska J., Urbańska M., Muc K., Forysiak A., Kublicka K. Nanoiron Based Oxygen Scavengers. Patent WO 2012091587A1, 2012.
  • [145] Foltynowicz Z., Kozak W., Stoińska J., Urbańska M., Muc K., Forysiak A., Kublicka K. Nano- iron-based Oxygen Scavengers. Patent EP 2658666A1, 2013.
  • [146] Foltynowicz Z., Kozak W., Stoińska J., Urbańska M., Muc K., Forysiak A., Kublicka K. Nanoiron-based Oxygen Scavengers. Patent IL 227146, 2013.
  • [147] Foltynowicz Z., Kozak W., Stoińska J., Urbańska M., Muc K., Forysiak A., Kublicka K. Nanoiron-based Oxygen Scavenger. Patent US 2014004232A1, 2013.
  • [148] An Update on Nanotechnology in the USA. The Magazine Nano 2009: 15-24.
  • [149] Moore D. Be All You Can Be: the Nano-enhanced Army. The Magazine Nano 2009, 15-18.
  • [150] Kubota N. Propellants and Explosives. Thermochemical Aspects of Combustion. 2nd ed., Weinheim: J. Wiley-VCH, 2007.
  • [151] Christian P., van der Kammer F., Baalousha M., Hofmann T. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology 2008, 17(5): 326-343.
  • [152] Rossi C., Estève A., Vashishta P. Nanoscale Energetic Materials. J. Phys. Chem. Solids 2010, 71(2):57-58.
  • [153] Walley S.M., Field J.E., Greenway M.W. Crystal Sensitivities of Energetic Materials. Mater. Sci. Technol. 2006, 22: 402-413.
  • [154] Garstka J. Nanotechnology – a New Battlefield. (in Polish) Przegląd Wojsk Lądowych 2006, 8: 88-92.
  • [155] Altman J. Military Uses of Nanotechnology – Too much Complexity for International Security? Complexities 2008, 14(1): 62-70.
  • [156] Altman J. Military Uses of Nanotechnology: Perspectives and Concerns. Security Dialogue 2004, 35(1): 61-79.
  • [157] Comet M., Schnell F., Pichot V., Mory J., Risse B., Spitzer D. Boron as Fuel for Ceramic Thermites. Energy Fuels 2014, 28(6): 4139-4148.
  • [158] Glebov E., Yuan L., Kishtopa L. Coating of Metal Powders with Polymers in Supercritical Carbon Dioxide. Ind. Chem. Res. 2001, 40(19): 4057-4068.
  • [159] Gromov A., Ilyin A., Förter-Barth U., Teipel U. Characterization of Aluminum Powders: Aluminum Nanopowders Passivated by Non-inert Coatings. Propellants Explos. Pyrotech. 2007, 31(4): 401-409.
  • [160] Yaghmaee M.S., Shokri B., Rahimipour M.R. Size Dependence Surface Activity of Metallic Nanoparticles. Plasma Processes Polym. 2009, 6: 876-832.
  • [161] Shenhar R., Rotello V.M. Nanoparticles: Scaffolds and Building Blocks. Acc. Chem. Res. 2003, 36: 549-561.
  • [162] Thostenson E., Li C., Chou T. Nanocomposites in Context. Compos. Sci. Technol. 2005, 65(3-4): 491-516.
  • [163] Yuan Y., Jiang W., Wang Y.J. Hydrothermal Preparation of Fe2O3/Graphene Nanocomposite and Its Enhanced Catalytic Activity of Thermal Decomposition of Ammonium Perchlorate. Appl. Surf. Sci. 2014, 303(1): 354-359.
  • [164] Zhigach A.N., Leipunsky I.O., Kudrov B.V. Aluminized HNIW-based Nanocomposite – Synthesis and Explosive Properties. Proc. European 2011 Seminar, Reims, France, 2011, Session S11b.
  • [165] Revell P.A. The Biological Effects of Nanoparticles. Nanotechnol. Perceptions 2006, 2: 283-298.
  • [166] Sindhu T.K., Sarathi R., Chakravarthy S.R. Generation and Characterization of Nano Process. Bull. Mater. Sci. 2007, 30(2): 187.
  • [167] Pragnesh D., Chaturvedi S. Nanocatalyst for Composite Solid Rocket Propellants. Germany: LAP LAMBERT Acad. Publish., 2010; ISBN 3838377214.
  • [168] Jayaraman K., Anand K.V., Chakravarthy S.R., Sarathi R. Effect of Nano-aluminum in Plateau- burning and Catalyzed Composite Solid Propellant Combustion. Combust. Flame 2009, 156(8): 1662-1673.
  • [169] Florczak B., Cudziło S. Catalytic Effect of Nano Fe2O3 on Burning Rate of Aluminized PBAN/NH4ClO4/HMX/Al Composite Propellant. (in Polish) Biul. WAT 2009, 58(4): 187-195.
  • [170] Kleppinger D.H. Potential for Powder Metallurgy Applications in Army Material. Progress in Powder Metallurgy 1971 P/M. [in:] Ordnance. New York: Metal Powder Industries Federation, 1971, 85.
  • [171] Ludyński Z., Nita Z. Fundamentals of Heavy Sinter Production Technology. (in Polish) Research and Development of New Structural Materials and Basic Technology for Military Armament Products Conf., Kołobrzeg, Poland, 1997, 15/1-15/20.
  • [172] Majewski T., Cudziło S., Czugała M. Combustion Synthesis of Tungsten and Rhenium Nanopowders for Heavy Alloys Applications. (in Polish) Biul. WAT 2009, 58(3): 9-16.
  • [173] https://www.globalsecurity.org/military/systems/munitions/index.html [retrieved 25.11.2017].
  • [174] Tungsten: The Perfect Metal for Bullets and Missiles. BBC News 2014, http://www.bbc.com/news/magazine-28263683 [retrieved 25.11.2017].
  • [175] Musee N. Nanowastes and the Environment: Potential New Waste Management Paradigm. Int. Environ. 2011, 37: 112-128.
  • [176] http://tech.wp.pl/kat,130034,title,rosyjska-armia-i-policja-zosta-13.na-wyposazone-w-nanopancerze, wid,15898379,wiadomosc.html [retrieved 25.03.2014].
  • [177] Marcisz J., Garbarz B., Adamczyk M., Wiśniewski A. New-precitates Hardened Steels of Wide Range of Strength an Toughness and High Resistance to Piercing with Projectiles. Problems of Mechatronics, Armament, Aviation, Safety Engineering 2012, 4(10): 39-54.
  • [178] Stępień J., Garbarz B., Burdek M., Marcisz J., Burian W. Modern Steel Materials Used in Production of Cartridge-cases, Cartridges, Bodies of Rocket and Artillery Projectiles and Armour. (in Polish) Problemy Techniki Uzbrojenia 2009, 38(111): 15-26.
  • [179] Marcisz J., Garbarz B., Burian W., Wiśniewski A. The Mechanisms of Dynamic Deformation in Ultrahighstrength Nanostructured Steels for Armours. (in Polish) Problemy Techniki Uzbrojenia 2011, 118(2): 41-49.
  • [180] Garbarz B., Marcisz J., Adamczyk M., Wiśniewski A. Ultrahigh-strength Nanostructured Steels for Armours. Problems of Mechatronics, Armament, Aviation, Safety Engineering 2011, 1(3): 25-36.
  • [181] Garbarz B., Burian W., Marcisz J., Wiśniewski A. The Nano-duplex NANOS-BA Steel for Application in Construction of Armours. Problems of Mechatronics, Armament, Aviation, Safety Engineering 2011, 4(10): 7-22.
  • [182] Lince J.R. Tribology of co-Sputtered Nanocomposite Au/MoS2 Solid Lubricant Films over a Wide Contact Stress Range. Tribol. Lett. 2004, 17: 419-428.
  • [183] Dey A., Sikder A.K., Talawar B.M., Chottopadhyay S. Towards New Directions in Oxidizers – Energetic Fillers for Composite Propellants: An Overview. Cent. Eur. J. Energ. Mater. 2015, 12(2): 377-399.
  • [184] Miziołek A.W., McNesby K.L., Russell R.S. Military Applications of Laser Induced Breakdown Spectroscopy (LIBS). Abstract Book for Pittcon, New Orleans, 2002.
  • [185] Xu J., Fisher, T.S. Enhancement of Thermal Interface Materials with Carbon Nanotube Arrays. Int. J. Heat Mass Transfer 2006, 49: 1658-1666.
  • [186] Son Y., Pal S.K., Tasciuk T.B., Ajayan P.M., Siegiel R.W. Thermal Resistance of the Native Interface between Vertically Aligned Multiwall Carbon Nanotube Arrays and Their SiO2/Si Substrate. J. Appl. Phys. 2008, 103: 024911.
  • [187] Unikrishman V.U., Reddy N., Banerjee D., Rostam-Abadin R. Thermal of Defective Enhance Defective Carbon-Nanotube Polimer Nanocomposites. Interaction Multiscale Mech. 2008, 1(4): 397-409.
  • [188] De Neve A. Military Use of Nanotechnology and Converging Technologies: Trends and Future Impacts. Royal High Institute for Defence Center for Security and Defence Studies, Focus Paper, 2009, 8: 1.
  • [189] Ratner D., Ratner M. Nanotechnology. A Gentle Introduction to the Next Big Idea. Prentice Hall Prof. Tech. Reference 2002, 102: 4-16.
  • [190] Chen Y., Li H., Sun Z. Development of Infrared Detectors using Single Carbon-nanotube-based Fieldeffect Transistors. IEEE Trans. Nanotechnol. 2010, 9: 582-589.
  • [191] Holt G.C. Negative Index of Refraction and Metamaterials. Nanotechnol. Perceptions 2008, 4: 201-205.
  • [192] Lezec H.J., Dionne J.H., Atwater H.A. Negative Refraction at Visible Frequencies. Science 2007, 316: 430-432.
  • [193] Seachman N.J., Williams L.C. Platen Cover for a Digital Document Scanner with Electrically Switchable Reflectance Modes. Patent US 5790211, 1998.
  • [194] Lopez R., Boatman L.A., Hayr T.E. Switchable Reflectivity on Silicon from a Composite VO2-SiO2 Protecting Layer. Appl. Phys. Lett. 2004, 85: 1410-1412.
  • [195] Hagn F., Eisolod L., Hardy J.G., Vendrely C., Coles M., Schreiber T., Kessler H. A Conserved Spider Silk Domain Acts as a Molecular Switch that Controls Fibre Assembly. Nature 2010, 465: 239-242.
  • [196] Cheng T.-W., Zeng Y.M., Wu Ch.-J. Analysis Tenable Negative Refraction in a Loss and Extrinsic Semiconductor. Appl. Optics 2015, 54(4): 658-662.
  • [197] Śmiałkowska-Opałka M. Future Warrior Concept. (in Polish) Techniczne Wyroby Włókiennicze 2009, 17(1): 10-13.
  • [198] Hagn F., Eisoldt L., Harley J.G., Vendrely C., Coles M., Scheibel T., Kessler H. A Conserved Spider Silk Domain Acts as a Molecular Switch that Controls Fibre Assembly. Nature 465(7295): 239-242.
  • [199] Moore D. Be All You Can Be: the Nano-enhanced Army. The Magazine Nano 2009, 15: 18.
  • [200] Hannah W., Thompson P.B. Nanotechnology Risk and the Environment: A Review. J. Environ. Monit. 2008, 10(3): 291-300.
  • [201] Brown M. Nanofibres Defuse Explosives. 2005, https://www.chemistryworld.com/news/Nanofibres-Defuse-Explosives/3002651.article [retrieved 20.11.2017].
  • [202] Hároz E.H., Rice W.D., Lu B.Y., Hauge R.M., Weisman R.M., Doorn S.K., Kono J. Enrichment of Armchair Carbon Nanotubes via Density Gradient Ultracentrifugation: Raman Spectroscopy Evidence. ACS Nano 2000, 4(4): 1955-1962.
  • [203] Bystrzejewska-Piotrowska G., Golimowski J., Urban P.I. Nanoparticles: Their Potentially Toxicity, Waste and Environmental Management. J. Waste Manage. 2009, 29: 2587.
  • [204] Klapötke T.M. Chemistry of High-energy Materials. 3rd ed., Berlin/Boston: de Gruyter, 2015.
  • [205] Paduch J., Kuziak R., Krztoń H., Pospiech J. Synthesis and Properties of Nanomaterials Embedded in Iron Matrix. (in Polish) Archiwum Technologii Maszyn i Automatyzacji 2007, 27(1): 143-152.
  • [206] Military Reloads with Nanotech. 2005, https://www.technologyreview.com/s/403624/Military-Reloadswith-Nanotech/ [retrieved 20.11.2017].
  • [207] Kumar U., Sikarwar S., Sonker R.K., Yadar B.C. Carbon Nanotubes: Synthesis and Application in Solar Cell. J. Inorg. Organomet. Polym. Mater. 2016, 26(6): 1231-1242.
  • [208] Dekker Encyclopedia Nanoscience and Nanotechnology. 3rd ed., Lyshevski S.E. Ed., CRS Press, 2016, Vol. I-VI.
  • [209] Muratore C., Hu J.J., Voevodin A.A. Adaptive Nanocomposite Coatings with a Titanium Nitride Diffusion Barrier Mask for High-temperature Tribological Applications. Thin Solid Films 2007, 550: 3638-3643.
  • [210] Muratore C., Hu J.J., Voevodin A.A. Tribological Coatings for Lubrication over Multiple Thermal Cycle. Surf. Coat. Technol. 2009, 203(8): 957-962.
  • [211] Rozmus M. Gradient Cermet Materials. (in Polish) Materiały Ceramiczne 2006, 58(4): 142-147.
  • [212] Chang T.-W., Zeng Y.M., Wu C.-J. Analysis Tenable Negative Refraction in a Loss and Extrinsic Semiconductor. Appl. Optics 54(4): 658-662.
  • [213] Wang X., Li Z., Xu W., Kulkarni S.A., Batabyal S.K., Zhang S., Cao A., Wong L.H. TiO2 Nanotube Arrays Based Flexible Perovskite Solar Cells with Transparent Carbon Nanotube Electrode. Nano Energy 2015, 11: 728-735.
  • [214] Pradhan N.R., Talapatna S., Terrones M., Ajayan P.Y., Balicas L. Optoelectronic Properties Heterostructures: The Most Recent Developments Based on Graphene and Transitions Metal Dicholeogenides. Nanotechnology Magazine 2017, 11(2): 18-32.
  • [215] Borm P.J.A., Robbins D., Haubol S., Kuhibusch T., Fissan H., Donaldson K., Schins R., Stone V., Kreyling W., Lademann J., Hartmann J., Warheit D., Oberdorfer J. The Potential Risk of Nanomaterials:A Review Carried out for ECETOC. Part. Fibre Toxicol. 2006, 3(11): 1-25.
  • [216] Sahoo S.K., Parveen S., Panda J.J. The Present and Future of Nanotechnology in Human Health Care. Nanomedicine 2007, 3(1): 20-31.
  • [217] Kelly M.J. Nanotechnology and Manufacturability. Nanotechnol. Perceptions 2011, 7: 79-81.
  • [218] Revell P.A. The Biological Effects of Nanoparticles. Nanotchnol. Perceptions 2006, 2: 283-298.
  • [219] Huczko A. Carbon Nanotubes. (in Polish) Warsaw: BeL Studio, 2004; ISBN 8388442864.
  • [220] Tomczak J. Dangers of Nanotechnology. (in Polish) http:// www.Nanonet.pl/pl/index.php/ nanobiznes/nanoryzyka/70-zagrożenia-wypływajace-z-Nanotechnologii [retrieved 25.03.2014].
  • [221] Ahamed M., Alsalhi M.S., Siddiqui M.K.J. Silver Nanoparticle Applications and Human Health. Clin. Chim. Acta 2010, 411: 1841-1848.
  • [222] Wachowski L., Kirszensztejn P. Chemical Environmental Hazards. [in:] Ecology Science Compendium. (in Polish) Strzałko J., Mossor-Pietraszewska T. Eds., 3rd ed., Warsaw/Poznań: PWN, 2006, Ch. VII, pp. 313-356.
  • [223] vanLoon G.W., Duffy S.J. Environmental Chemistry: A Global Perspective. (in Polish) Warsaw: PWN, 2007.
  • [224] Hofman M., Wachowski L. Analysis of Platinum and Lead Content in Soil Along the Main Poznań Exit Routes. (in Polish) Ochrona Środowiska 2010, 32(3): 43-47.
  • [225] Pietrzak R., Wachowski L. Concerns Related to the Possible Adverse Effects of Nanoobjects on Environment and Human Life. [in:] Waste and packaging – New legal regulations and obligations. (in Polish) Wachowski L. Ed., Poznań: Forum, 2012, Ch. 2/4.5.1, pp. 1-13.
  • [226] Pietrzak R., Wachowski L. Classification of Nanowaste as a Tool to Determine Their Harmfulness. [in:] Waste and Packaging – New Legal Regulations and Obligations. (in Polish) Wachowski L. Ed., Poznań: Forum, 2012, Ch. 2/4.5.2, pp. 1-13.
  • [227] Łebkowska M., Załęska-Radziwiłł M. Occurence and Ecotoxicity of Nanoparticles. (in Polish) Ochrona Środowiska 2011, 33(4): 23-26.
  • [228] Moore M.N. Nanoparticles Present Ecotoxicological Risk for the Health of the Aquatic Environment? Environ. Int. 2006, 32(8): 967-976.
  • [229] Fröhlich E. Cellular Targets and Mechanisms in the Cytotoxic Action of Non-Biodegradable Engineered Nanoparticles. Curr. Drug Metab. 2013, 14: 976-988.
  • [230] Park M.V., Neigh A.M., Vermeulen J.P., de la Fonteyne L.J., Verharen H.W., Briedé J.J., van Loveren H., de Jong W.H. The Effect of Particle Size on the Cytotoxicity, Inflammation, Developmental Toxicity and Genotoxicity of Silver Nanoparticles. Biomaterials 2011, 32(36): 9810-9817.
  • [231] Świdzińska-Grajewska M.A. Nanoparticles (Part 1) – Products of Modern Technology and New Hazards in the Work Environment. (in Polish) Medycyna Pracy 2007, 58(3): 243-251.
  • [232] Beck R., Guterres S., Pohlmann A. Nanocosmetics and Nanomedicines. New Approaches for Skin Care. Berlin/Heidelberg: Springer-Verlag, 2011.
  • [233] Geiser M., Kreyling W.G. Deposition and Biokinetics of Inhaled Nanoparticles. Part. Fibre Toxicol. 2010, 7/2: 3-17.
  • [234] Wachowski L., Domka L. Sources and Effects of Asbestos and Other Mineral Fibers Presence in Ambient Air. Polish J. Environ. Stud. 2000, 9(6): 443-454.
  • [235] Tang Y., Han S., Liu H., Chen X., Huang L., Li X., Zhang J. The Role of Surface Chemistry in Determining in vivo Biodistribution and Toxicity of CdSe/ZnS Core-Shell Quantum Dots. Biomaterials 2013, 3:8741-8755.
  • [236] Karlsson H.L. The Comet Assay in Nanotoxicology Research. Anal. Bioanal. Chem. 2010, 398(2):651-666.
  • [237] Neal A.L. What Can Be Inferred from Bacterium-Nanoparticle Interactions about the Potential Consequences of Environmental Exposure to Nanoparticles? Ecotoxicology 2008, 17(5): 362-371.
  • [238] Altmann J., Gubrud M.A. Risks from Military Uses of Nanotechnology – the Need for Nanotechnology. Lecce 2002, 3/11-12.
  • [239] Love S.A., Maurer-Jones M.A., Thompson J.W., Lin Y.-S., Haynes C.L. Assessing Nanoparticle Toxicity. Annu. Rev. Anal. Chem. 2012, 5: 181-205.
  • [240] Moore D.F. Nanotechnology and the Military, Nanoethics: The Ethical and Social Implications of Nanotechnology. Allhoff F., Lin P., Moor J., Weckert J. Eds., Wiley-VCH, 2007.
  • [241] Altmann J., Gubrud M.A. Military, Arms Control, and Security Aspects of Nanotechnology. Discovering Nanoscale 2004, 269; ISBN 1-58603-467-7.
  • [242] Bennet-Woods D. Nanotechnology: Ethics and Society. CRS Press, 2008.
  • [243] Moore D.F. Nanotech in Warfare. Some Ethical Concerns. Nano Magazine 2012, 23(February): 14-17.
  • [244] Allhoff F., Lin P. What’s So Special About Nanotechnology and Nanoethics? J. Appl. Phylosophy 2006, 20(2): 179-190.
  • [245] Lin P., Allhoff F. Against Unrestricted Human Enhancement. J. Evolution Technol. 2008, 18(1): 35-41.
  • [246] Stoccoro A., Karlsson H.L., Coppedè F., Migliore L. Epigenetic Effects of Nano Sized Materials. Toxicology 2013, 313: 3-14.
  • [247] Smopczyński T., Góralczyk K., Czaja K., Struciński P., Hernik A., Korcz W., Ludwicki J.K. Nanotechnology and Related Hazards. (in Polish) Roczniki Państwowego Zakładu Higieny 2009, 60(2):101-111.
  • [248] Fairbrother A., Fairbrother J.R. Are Environmental Regulations Keeping up with Innovation? A Case Study of the Nanotechnology Industry. Ecotoxicol. Environ. Saf. 2009, 72(5): 1327-1330.
  • [249] Hasselloev M., Readman J.W., Ranville J.F., Tiede K. Nanoparticle Analysis and Characterization Methodologies in Environmental Risk Assessment of Engineered Nanoparticles. Ecotoxicology 2008, 17(5): 344-361.
  • [250] Crane M., Handry R.D., Garrod J., Owen R. Ecotoxicity Test Methods and Environmental Hazard Assessment for Engineered Nanoparticles. Ecotoxicology 2008, 17(5): 421-437.
  • [251] Handy R.D., Owen R., Valsami-Jones E. The Ecotoxicology of Nanoparticles and Nanomaterials: Current Status, Knowledge Gaps, Challenges and Future Needs. Ecotoxicology 2008, 17(5): 315-325.
  • [252] Key Nanotechnology Indicators. http://www.oecd.org/sti/nanotechnology-indicators.htm.
  • [253] Foltynowicz Z. Nanocomposites – New materials in Packaging, New Type of Waste and New Concerns for Recycling. (in Polish) Recycling Logistics Conf., Wrocław: Poland, 2017.
  • [254] Nanotechnology: The Promises and Pitfalls of Science at the Nanoscale. https://www.acs.org/content/dam/acsorg/membership/acs/benefits/extra-insights/nanotech-final-040816.pdf [retrieved 20.11.2017].
Uwagi
Artykuł został pierwotnie opublikowany w jęz. polskim w Materiały Wysokoenergetyczne 2017, 9: 18-39.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95920899-e74c-48d5-b9fc-b2c8a8acfe74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.