Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the issue of computer aided simulation application in a mixed-model production systems. Computer simulation is a very powerful tool for building, testing and rebuilding production systems, especially as an aid in the decision making process. Different methods of computer simulation with the basic characterization and their main advantages and disadvantages are presented. Basing on the key features of presented simulation types, a method most proper for simulating a mixed-model production system is proposed. Simulation of a production system in Flexsim simulation software environment is presented. Conclusions on the advantages of use of computer aided simulation are given.
Czasopismo
Rocznik
Tom
Strony
213--218
Opis fizyczny
Twórcy
autor
- Institute of Engineering Processes Automation and Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
Bibliografia
- 1. Law, A.M. and McComas, M.G. Simulation of manufacturing systems. 1999: ACM.
- 2. Schroer, B.J. and Tseng, F.T., Modelling complex manufacturing systems using discrete event simulation. Computers & industrial engineering, 1988. 14(4): pp. 455-464.
- 3. Gupta, M., et al., Operations planning and scheduling problems in advanced manufacturing systems. International Journal of Production Research, 1993. 31(4): pp. 869-900.
- 4. Pathak, S. and Dilts, D. Simulation of supply chain networks using complex adaptive system theory. 2002: IEEE
- 5. Sabuncuoglu, I., A study of scheduling rules of flexible manufacturing systems: a simulation approach. International Journal of Production Research, 1998. 36(2): pp. 527- 546.
- 6. Coyle, R.G., Management system dynamics. Vol. 6. 1977: Wiley New York.
- 7. Forrester, J.W., Industrial dynamics. 1965: MIT press.
- 8. Forrester, J.W., System dynamics—a personal view of the first fifty years. System Dynamics Review, 2007, no. 23: pp. 345- 358
- 9. Macal, C.M. and North, M.J., Tutorial on agent-based modeling and simulation. Journal of Simulation, 2010. 4(3): pp. 151-162.
- 10.Nilsson, F. and Darley, V., On complex adaptive systems andagent-based modelling for improving decision-making in manufacturing and logistics settings: Experiences from a packaging company. International Journal of Operations & Production Management, 2006. 26(12): pp. 1351-1373.
- 11. Schriber, T.J. and Brunner, D.T. Inside discrete-event simulation software: how it works and why it matters, 1998, IEEE, pp. 77-86.
- 12. Pollacia, L.F., A survey of discrete event simulation and stateof-the-art discrete event languages. ACM SIGSIM Simulation Digest, 1989. 20(3): pp. 8-25.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-958c74b2-da9b-499a-b1e1-58c9c15c72cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.