PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of calcium peroxide as an environmentally friendly oxidant to reduce pathogens in organic fertilizers and its impact on phosphorus bioavailability

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykorzystanie nadtlenku wapnia jako przyjaznego dla środowiska utleniacza do redukcji patogenów w nawozach organicznych i jego wpływ na biodostępność fosforu
Języki publikacji
EN
Abstrakty
EN
The article presents the research into hygienizing process of chicken manure using calcium peroxide (CaO2) as an environmentally friendly biological deactivation agent. The influence of the addition of CaO2 to chicken manure on the bioavailability of phosphorus was also analyzed. The process of biological deactivation using CaO2, CaO and Ca(OH) 2 agents was analyzed applying the disk diffusion method. To optimize the effect of the hygienizing parameters, (CaO2 concentration, pH, temperature and time) on the reduction of Enterobacteriaceae count the Taguchi method was applied. The content of bioavailable phosphorus was measured with the Egner-Riehm method and determined with spectrophotometry. The reduction in bacterial count followed an increase in the concentration of CaO2 in a sample. The optimal experimental conditions (CaO2=10.5 wt.%, pH=9.5, T=40°C, t=180 h) enabled a significant decrease in the Enterobacteriaceae count, from 107 cfu/g to 102 cfu/g. Analysis of the samples with Egner-Riehm method showed that the phosphorus content decreased with the addition of biocide CaO2: from 26.6 mg/l (for 3.5 wt.%) to 3.5 mg/l (for 10.5 wt.%). These values were slightly higher than the content of phosphorus deactivated with Ca(OH) 2 i.e., from 11.25 mg/l (for 3.5 wt.%) to 4.49 mg/l (for 10.5 wt.%). The application of CaO2 for hygienizing chicken manure enables effective reduction of Enterobacteriaceae count to an acceptable level (below 1000 cfu/g). In comparison with the traditional techniques of hygienization, the application of CaO2 has a positive effect on the recovery of bioavailable phosphorus.
PL
W artykule przedstawiono badania procesu higienizacji pomiotu kurzego przy użyciu nadtlenku wapnia (CaO2) jako przyjaznego dla środowiska biologicznego środka dezaktywującego. Przeanalizowano również wpływ dodatku CaO2 do obornika kurzego na biodostępność fosforu. Proces biologicznej dezaktywacji z użyciem CaO2, CaO and Ca(OH) 2 zbadano metodą dyfuzyjno-krążkową. Dla optymalizacji wpływu parametrów procesu higienizacji (stężenie CaO2, pH, temperatura i czas) na zmniejszenie liczby bakterii Enterobacteriaceae zastosowano metodę Taguchi. Zawartość fosforu biodostępnego zmierzono metodą Egnera-Riehma i oznaczono spektrofotometrycznie. Obniżenie liczby bakterii następowało ze wzrostem stężenia CaO2 w próbce. Najbardziej optymalne parametry procesu higienizacji, tj.: CaO2=10.5 wt.%, pH=9.5, T=40°C, t=180 h pozwoliły na zmniejszenie liczby bakterii Enterobacteriaceae z 107 cfu/g do 102 cfu/g. Analiza próbek metodą Egnera-Riehma wykazała, że zawartość fosforu biodostępnego w ekstraktach obornika kurzego (mg/l) malała wraz ze wzrostem ilości dodanego CaO2, tj.: od 26,6 mg/l przy 3,5% wag. do 3,5 mg/l przy 10 %wag. Wartości te były nieznacznie wyższe w porównaniu próbkami dezaktywowanymi Ca(OH) 2, tj: od 11,25 mg/l przy 3,5 %wag; do 4,49 mg/l przy 10 %wag. Zastosowanie CaO2 do celów higienizacji pomiotu kurzego pozwoliło na efektywną redukcję bakterii Enterobacteriaceae do poziomu dopuszczalnego (poniżej 1000 jtk/g). W porównaniu do tradycyjnie stosowanych technik higienizacji wapnem, użycie CaO2 wpływa korzystnie na odzysk fosforu biodostępnego.
Rocznik
Strony
42--53
Opis fizyczny
Bibliogr. 62 poz., tab., wykr.
Twórcy
  • Central Mining Institute, Department of Risk Assessment and Industrial Safety, Poland
  • Central Mining Institute, Department of Water Protection, Poland
  • Chemiqua Water & Wastewater Company, Poland
Bibliografia
  • 1. Abustan, A., Pudjirahaju, A. & Arsyad, M. (2019). Reducing ammonia gas from chicken manure with lime and soybean plants. Environmental Quality Management, 28, pp. 49-56, DOI: 10.1002/tqem.21635.
  • 2. Unal, B.H., Hakan Bayraktar, Ö.H., Akdeniz, R.C. & Alkan, I. (2015). Evaluation possibilities of chicken manure in Turkey. Agricultural Engineering, 19, 2, pp. 5-14, DOI: 10.14654/ir.2015.154.116.
  • 3. Bezak-Mazur, E. & Stoińska, R. (2013). The importance of phosphorus in the environment - review article. Archives of Waste Management and Environmental Protection, 15, 3, pp. 33-42.
  • 4. Bicudo, J. R. & Goyal, S. M. (2008). Pathogens and manure management systems: A review. Environmental Technology, 24, 1, pp. 115-130, DOI: 10.1080/09593330309385542.
  • 5. Bolan, N.S., Szogi, A.A., Chuasavathi, T., Seshadri, B., Rothrock, M. J. & Panneerselvam, P. (2010). Uses and management of poultry litter. World’s Poultry Science Journal, 66, pp. 673-698, DOI: 10.1017/S0043933910000656.
  • 6. Bożym, M. (2010). Fly ash from brown coal in sewage sludge management. Prace Instytutu Ceramiki i Materiałów Budowlanych, 5, pp. 103-112. (in Polish)
  • 7. Budavari, S. (1996). The Merck Index: an encyclopedia of chemicals, drugs, and biological.12th ed. p. 1735. Merck and Co. Inc., Whitehouse Station, New Jersey.
  • 8. Chen, Z. & Jiang, X. (2014). Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review. Agriculture, 4, 1, pp 1-29, DOI: /10.3390/agriculture4010001.
  • 9. Cho, I. & Lee, K. (2002). Effect of calcium peroxide on the growth and proliferation of Microcystis aerusinosa, a water-blooming cyanobacterium. Biotechnology and Bioprocess Engineering, 7, 4, pp. 231-233, DOI: 10.1007/BF02932976.
  • 10. Domaradzki, M., Kaniewska, J. & Korpal, W. (2012). Oxygen fertilizers in technology of plant seeds. Influence of CaO2 additive on the quality of pelleted seeds. Chemik, 66, 5, pp. 461-466.
  • 11. Dróżdż, D., Wystalska, K., Malińska, K., Grosser, A., Grobelak, A. & Kacprzak, M. (2020) Management of poultry manure in Poland - Current state and future perspectives. Journal of Environmental Management, 264, 110327, DOI: 10.1016/j.jenvman.2020.110327.
  • 12. European Commission. (2002). Regulation (EC) No 1774/2002 of the European Parliament and of the Council of 3 October 2002 laying down health rules concerning animal by-products not intended for human consumption. Official Journal of the European Communities L273/1. Retrieved from http://faolex.fao.org/docs/pdf/eur49611.pdf.
  • 13. Faridullah, M.I., Yamamoto, S., Ahmad, Z., Endo, T. & Honna, T. (2009). Extractability and bioavailability of phosphorus from soils amended with poultry litter and poultry litter ash. Journal of Food, Agriculture and Environment, 7, 2, pp. 692-697.
  • 14. Fu, S.F., Chen, K.Q., Zou, H., Xu, J. X., Zheng, Y. & Wang, Q.F. (2018). Using calcium peroxide (CaO2) as a mediator to accelerate tetracycline removal and improve methane production during co-digestion of corn straw and chicken manure. Energy Conversion and Management, 172, 7, pp. 588-594, DOI: 10.1016/j.enconman.2018.07.055.
  • 15. Ghaly, A.E. & Alhattab, M. (2013). Drying poultry manure for pollution potential reduction and production of organic fertilizer. American Journal of Environmental Sciences, 9, 2, pp. 88-102, DOI: 10.3844/ajessp.2013.88.102.
  • 16. Ghaly, A.E. & Singh, R.K. (1991). Laboratory evaluation of the pollution potential of land applied dairy manure. Waste Management, 11, 4, pp. 307-318, DOI: 10.1016/0956-053X(91)90077-I.
  • 17. GOST 26208-91: 1993. Soils. Determination of mobile compounds of phosphorus and potassium by Egner-Riehm-Domingo method (AL-method). Moscow, Russia.
  • 18. Hansen, R.C., Keener, H.M. & Hoitink, H.A.J. (1989). Poultry manure composting. An exploratory study. Transactions of the American Society of Agricultural Engineers, 32, 6, pp. 2151-2158, DOI: 10.13031/2013.31277.
  • 19. Heinonen-Tanski, H., Mohaibes, M., Karinen, P. & Koivunen, J. (2006) Methods to reduce pathogen microorganisms in manure. Livestock Science 102, pp. 248-255, https://doi.org/10.1016/j.livsci.2006.03.024.
  • 20. Henrickson, C. (2005) Cliffs Notes Chemistry Practice Pack Wiley Publishing, Inc. Hoboken, NJ.
  • 21. Janda, A. & Marcinkowski, T. (2019). Modification possibilities for oxidation effectiveness of hard degradable organic pollutants. Journal of Polish Sanitary Engineers’ Association. 41, 1, pp. 47-53.
  • 22. Kanwar, R.S. (2002). Environmental impacts of the use of poultry manure for agricultural production system. Leopold Center Completed Grant Reports. 177. http://lib.dr.iastate.edu/leopold_grantreports.
  • 23. Kucharski, P. & Białecka, B. (2019). Poultry manure as a substrate for agriculture and the chemical industry. In: 19th International Multidisciplinary Scientific GeoConference. Section Ecology and Environmental Protection. Bulgaria, DOI: 10.5593/sgem2019/5.2.
  • 24. Kwaśny, J., Kowalski, Z. & Banach, M. (2011). Fertilizer properties of pig slurry in the context of selected macro- and micronutrients content. Technical Transactions, 10,108, pp. 108-123.
  • 25. Li, B., Boiarkina, I., Yu, W., Huang, H.M., Munir, T., Wang, G.Q. & Young, B.R. (2019). Phosphorous recovery through struvite crystallization: Challenges for future design. Science of the Total Environment, 648, pp. 1244-1256, DOI: 10.1016/j.scitotenv.2018.07.166.
  • 26. López, D.A.R. & Mueller, D. (2009). Use of calcium peroxide in bioremediation of soils contaminated with hydrocarbons. Caderno de Pesquisa Serie Biologia, 21(3), pp. 61-72.
  • 27. Lu, S., Zhang, X. & Xue, Y. (2017). Application of calcium peroxide in water and soil treatment: A review. Journal of Hazardous Materials, 337, pp. 163-177, DOI: 10.1016/j.jhazmat.2017.04.064.
  • 28. Jałowiecki, Ł., Chojniak, J. & Płaza, G. (2016). Methods for detection of antibiotic resistance of environmental bacteria. Proceedings 2106. Interdyscyplinarne Zagadnienia w inżynierii i ochronie środowiska, 7, pp. 69-77. (in Polish)
  • 29. Maguire, R.O., Hesterberg, D., Gernat, A., Anderson, K., Wineland, M. & Grimes, J. (2006). Liming Poultry Manures to Decrease Soluble Phosphorus and Suppress the Bacteria Population. Journal of Environmental Quality, 35, 3, pp. 849-857, DOI: 10.2134/jeq2005.0339.
  • 30. Malej, J. (2000). Properties of sewage sludge and selected methods of their neutralisation, processing and utilisation. Annual Set The Environment Protection, 2, pp. 69-101. Retrieved from http://old.ros.edu.pl/text/pp_2000_003.pdf. (in Polish)
  • 31. Małachowska-Jutsz, A., Turek-Szytow, J. & Miksch, K. (2014). Effect of calcium peroxide on zootoxicity in fluoranthenecontaminated soil. Przemysł Chemiczny, 93, 12, pp. 1000-1003, DOI: 10.12916/przemchem.2014.2197. (in Polish)
  • 32. Ministry of Agriculture and Rural Development. Regulation of 18 June 2008 on the implementation of certain provisions of fertilizers and fertilization, Journal of Law 119, issue 765. (in Polish)
  • 33. Mituniewicz, T., Piotrowska, J., Sowińska, J., Mituniewicz, E., Iwańczuk-Czernik, K. & Wójcik, A. (2016). Effect of calcium peroxide (CaO2) addition to poultry litter on the parameters of its physicochemical, microbiological and fertilising quality. Journal of Elementology, 21, 4, pp. 1327-1341, DOI: 10.5601/jelem.2016.21.1.1056.
  • 34. Moraru, R., Pourcher, A.-M., Jadas-Hecart, A., Kempf, I., Ziebal, C., Kervarrec, M. & Dabert, P. (2012). Changes in Concentrations of Fluoroquinolones and of Ciprofloxacin-resistant Enterobacteriaceae in Chicken Feces and Manure Stored in a Heap. Journal of Environmental Quality, 41, 3, pp. 754-763, DOI: 10.2134/jeq2011.0313.
  • 35. Mrozowska, J. (1999) Laboratory of General and Environmental Microbiology 2144, Silesian University of Technology, Gliwice.
  • 36. Myszograj, S. & Puchalska, E. (2012). Waste from rearing and slaughter of poultry - treat to the environment or feedstock for energy. Environmental Medicine, 15, 3, pp. 106-115. (in Polish)
  • 37. Ngili, Y. (2009). Biochemistry of Metabolism & Bioenergitics. Yogyakarta, Indonesia: Graha Ilmu.
  • 38. Nicholson, F.A., Chambers, B.J., & Smith, K.A. (1996). Nutrient Composition of Poultry Manures in England and Wales. Bioresource Technology, 58, pp. 279-284.
  • 39. Nicholson, F.A., Chambers, B.J., Williams, J.R. & Unwin, R.J. (1999). Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology, 70, 1, pp. 23-31, DOI: 10.1016/S0960-8524(99)00017-6.
  • 40. Northup, A. & Cassidy, D. (2008). Calcium peroxide (CaO2) for use in modified Fenton chemistry. Journal of Hazardous Materials, 152, 3, pp. 1164-1170, DOI: 10.1016/j.jhazmat.2007.07.096.
  • 41. PN-EN 12457-2 (2004) Characterisation of waste-Leaching-Compliance test for leaching of granular waste materials and sludges - Part 2. Polish Committee for Standardization. Warsaw.
  • 42. PN-EN 15934 (2013) Sludge, treated biowaste, soil and waste. Calculation of dry matter fraction after determination of dry residue or water content. Polish Committee for Standardization. Warsaw.
  • 43. PN ISO 4832 (2007). Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of coliforms - Colony-Count technique. Polish Committee for Standardization. Warsaw.
  • 44. Popova, T.P., Marinova-Garvanska, S.M., Dobromirova Kaleva, M., Zaharinov, B.S., Gencheva, A.B. & Baykov, D.B. (2014). Decontamination of sewage sludge by treatment with calcium oxide. International Journal of Current Microbiology and Applied Sciences, 3, 9, pp. 184-192.
  • 45. Przywara, L. (2006). The conditions and possibilities of phosphates and total phosphorus removal from industrial wastewater. PhD Dissertation. The University of Bielsko-Biała. (in Polish)
  • 46. Qu, G., Cai, Y., He, K., Gao, H., Xie, R., Chen, X. & Ning, P. (2018). Adding calcium oxide combined with calcium peroxide for strengthening rapid biological drying of dairy cattle manure. Journal of Environmental Waste Management and Recycling, 1, 2, pp. 47-56.
  • 47. Rahul, D., & Pretesh, J. (2018). Application of Taguchi-Based Design of Experiments for Industrial Chemical Processes, Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes. Valter Silva: IntechOpen, DOI: http://dx.doi.org/10.5772/intechopen.69501 139.
  • 48. Ropp, R.C. (2013). Encyclopedia of the Alkaline Earth Compounds. Elsevier, Oxfort, DOI: 10.1016/b978-0-444-59550-8.00003-x.
  • 49. Sladdin, M. & Lynch, J.M. (1983). Antimicrobial Properties of Calcium Peroxide in Relation to Its Potential Use as a Seed Dressing. Microbiology, 129, 7, pp. 2307-2314, DOI: 10.1099/00221287-129-7-2307.
  • 50. Steen, I. (1998). Phosphorus availability in the 21st century: Management of a non-renewable resource. Phosphorus & Potassium, 217, pp. 25-31.
  • 51. Sweeten, J.M. & Auvermann, B. (1988). Composting manure and sludge. Agri Life Extension, pp. 38-44.
  • 52. Syers, J.K., Johnston, A.E. & Curtin, D. (2008). Efficiency of soil and fertilizer phosphorus use. Reconciling changing concepts of soil phosphorus behaviour with agronomic information. Experimental agriculture, Fertilizer and plant nutrition bulletin, Rome, Italy. Food and AOthe (FAO), DOI: 10.1017/s0014479708007138.
  • 53. Thomas, M., Białecka, B. & Zdebik, D. (2015). Treatment of wastewater from the photochemical production of printed circuit boards by using Fenton reagent after addition of disodium percarbonate. Przemysł Chemiczny, 94, 6, pp. 924-929, DOI: 10.15199/62.2015.6.12.
  • 54. Thomas, M., Białecka, B. & Zdebik, D. (2016). Treatment of wastewater from the photochemical production of printed circuit boards by using Fenton reagent after addition of calcium peroxide. Przemysł Chemiczny, 95, 11, pp. 2264-2269, DOI: 10.15199/62.2016.11.24.
  • 55. Thomas, M., Białecka, B. & Zdebik, D. (2017). Removal of organic compounds from wastewater originating from the production of printed circuit boards by UV-Fenton method. Archives of Environmental Protection, 43, 4, pp. 39-49, DOI: 10.1515/aep-2017-0044.
  • 56. Turek-Szytow, J., Marciocha, D., Kalka, J. & Surmacz-Górska, J. (2020). Peroxide impact on the fate of veterinary drugs in fertilizers. Chemical Papers, 74, 1, pp. 311-322, DOI: 10.1007/s11696-019-00883-x.
  • 57. Tyszkiewicz, Z., Czubaszek, R. & Roj-Rojewski, S. (2019). Basic Methods of Laboratory Soil Analysis. Bialystok University of Technology, DOI:10.24427/978-83-65596-89-5. (in Polish)
  • 58. Walawska, B., Gluzińska, J., Miksch, K., & Turek-Szytow, J. (2007). Solid inorganic peroxy compounds in environmental protection. Polish Journal of Chemical Technology, 9, 3, pp. 68-72, DOI: 10.2478/v10026-007-0057-0.
  • 59. Wiedemann, S., McGahan, E. & Burger, M. (2008). Layer hen manure analysis report. Australian Egg Corporation Limited, North Sydney, pp. 1-25.
  • 60. Wieremiej, W. (2016). Usefulness of poultry wastes in fertilization of maize (Zea mays L.) and their influence on selected soil properties. PhD Dissertation, Siedlce University of Natural Science and Humanities. (in Polish)
  • 61. Wiliams C.M., Barker J.C. & Sims J.T. (1999) Management and Utilization of Poultry Wastes. In: Ware, G.W. (ed.) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, 162. Springer, New York, DOI: 10.1007/978-1-4612-1528-8_3.
  • 62. Yokota, T., Ito, T. & Saigusa, M. (2003). Measurement of total phosphorus and organic phosphorus contents of animal manure composts by the dry combustion method. Soil Science and Plant Nutrition, 49, 2, pp. 267-272, DOI: 10.1080/00380768.2003.10410006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95822877-47f7-4856-af3d-6be72a6577c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.