PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Susceptibility to Stress Corrosion Cracking of Selected Amorphous Polymer Materials in a Sea-Water Environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aimed to determine the susceptibility of polycarbonate and polymethylmethacrylate to corrosion cracking under specific operating conditions. The tests included static tensile and flexure, impact strength, and microscopic examination. Due to the synergistic effect of tensile stresses and seawater environment, numerous cracks are observed. Moreover, aging conditions did not significantly reduce the strength properties of the tested specimens; thus, higher resistance to stress corrosion cracking does not have a close relationship with the material's mechanical properties.
Twórcy
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Theoretical and Applied Mechanics, Konarski 18A, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Theoretical and Applied Mechanics, Konarski 18A, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Theoretical and Applied Mechanics, Konarski 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Koch G.H., Tests for Stress-Corrosion, Advanced Materials & Processes/August 2001; 36–38.
  • 2. Guma T.N., Ajayi E.O., Mohammed M.H., Standard techniques of stress corrosion cracking testing: a review, Journal of Newviews in Engineering and Technology (JNET) 2020; 2(1): 58–72.
  • 3. Bieliński, M., Czyżewski, P., Methodology of tests for determining resistance to stress corrosion of plastic components, Modern Engineering 2017; 20–25.
  • 4. Fontana, M.G., Staehle, R.W., Stress Corrosion Cracking in Aircraft Structures. In: ASM Handbook. Corrosion: Environments and Industries. ASM International, Materials Park, OH 2005; 13C.
  • 5. Lim J.K.,13 - Stress corrosion cracking (SCC) in polymer composites, Editor(s): V.S. Raja, Tetsuo Shoji, In Woodhead Publishing Series in Metals and Surface Engineering, Stress Corrosion Cracking, Woodhead Publishing 2011; 485–536C. https:// doi.org/10.1533/9780857093769.3.485
  • 6. Megel M., Kumosa L., Ely T., Armentrout D., Kumosa M., Initiation of stress-corrosion cracking in unidirectional glass/polymer composite materials, Compos Sci. Technol. 2001; 61(2): 231–246.
  • 7. Hayes M.D., Edwards D.B., Shah A.R., Fractography in Failure Analysis of Polymers, 2nd Edition – Elsevier 2024.
  • 8. Takafumi Kawaguchi., Hiroyuki N., Keiichi K., Takashi K., Ikuo N. Environmental Stress Cracking (ESC) of Plastics Caused by Non-Ionic Surfactants. Polymer Engineering & Science. 2003; 43: 419–430. https://doi.org/10.1002/pen.10034.
  • 9. Dunn P., Sansom G.F. The stress cracking of polyamides by metal salts. Part I. Metal halides. J. Appl. Polym. Sci. 1969; 13: 1641–1655. https:// doi.org/10.1002/app.1969.070130806.
  • 10. Jipa A., Reiter L., Flatt R.J., Dillenburger B. Environmental stress cracking of 3D-printed polymers exposed to concrete, Additive Manufacturing 2022; 58: 103026. https://doi.org/10.1016/j.addma.2022.103026.
  • 11. Solis-Ramos E., Kumosa M., Synergistic effects in stress corrosion cracking of glass reinforced polymer composites, Polymer Degradation and Stability. 2017; 136: 146–157. https://doi.org/10.1016/j. polymdegradstab.2016.12.016.
  • 12. Sridhar, N., Subramanian, C. Stress Corrosion Cracking. In: Subramanian C. (eds) Corrosion for Everybody. Springer, Singapore 2017.
  • 13. Ge H., Le J-L., Mantell S.C., Numerical modeling of stress corrosion cracking of polymers, Engineering Fracture Mechanics 2016; 160: 199–212. https:// doi.org/10.1016/j.engfracmech.2016.04.004.
  • 14. Lewis P.R., Environmental stress cracking of Failure Analysis 2009; 16(6): 1816–1824. https:// doi.org/10.1016/j.engfailanal.2008.08.026.
  • 15. Almomani A., Mourad A-H.I., Deveci S., WeeJ-W., Choi B-H., Recent advances in slow crack growth modeling of polyethylene materials, Materials & Design 2023; 227: 111720. https://doi. org/10.1016/j.matdes.2023.111720.
  • 16. Hejman U., Bjerkén C., Investigation of branching in polycarbonate due to stress corrosion. In: Proceedings 17th European Conference on Fracture, Brno 2008 [Internet]. VUTIUM Brno, Czech Republic; 2008. Available from: https://urn.kb.se/res olve?urn=urn:nbn:se:mau:diva-12472
  • 17. Higuchi, Y. Observation of environmental stress cracking in polymethylmethacrylate by using the chemiluminescence method. Materials Sciences and Applications 2015; 6: 10841088. https://doi. org/10.4236/msa.2015.611107.
  • 18. Arnold J.C. The Effects of Diffusion on Environmental Stress Crack Initiation in PMMA. Journal of Materials Science1998; 33: 5193–5204. http:// dx.doi.org/10.1023/A:1004431920449
  • 19. Contino M., Andena L., Rink M., Environmental stress cracking of high-density polyethylene under plane stress conditions, Engineering Fracture Mechanics 2021; 241: 107422, https://doi. org/10.1016/j.engfracmech.2020.107422
  • 20. Ng S.K., Kamaludin M.A., Dear J.P., Blackman B.R., Environmental effects in biaxially orientated Polymethyl Methacrylate, Procedia Structural Integrity 2018; 13: 304–310, https://doi.org/10.1016/j.prostr.2018.12.051
  • 21. Kamaludin M.A., Patel Y., Blackman B.R.K., Williams J.G., Fracture mechanics testing for environmental stress cracking in thermoplastics, Procedia Structural Integrity 2016; 2: 227–234, https://doi. org/10.1016/j.prostr.2016.06.030
  • 22. Andena L., Castellani L., Castiglioni A., Mendogni A., Rink M., Sacchetti F., Determination of environmental stress cracking resistance of polymers: Effects of loading history and testing configuration, Engineering Fracture Mechanics 2013; 101: 33–46, https://doi.org/10.1016/j.engfracmech.2012.09.004
  • 23. Khalifeh, A. Stress corrosion cracking behawior of materials, engineering failure analysis, IntechOpen. Crossref 2020. https://doi.org/10.5772/ intechopen.90893.
  • 24. Thuy M., Pedragosa-Rincón M., Niebergall U., Oehler H., Alig I., Böhning M. Environmental stress cracking of high-density polyethylene applying linear elastic fracture mechanics. Polymers 2022; 14(12): 2415. https://doi.org/10.3390/polym14122415
  • 25. Andena L., Rink M., Marano C., Briatico-Vangosa F., Castellani L., Effect of processing on the envi- ronmental stress cracking resistance of high-impact polystyrene, Polymer Testing 2016. https://doi. org/10.1016/j.polymertesting.2016.06.017
  • 26. Edvânia T., Suédina S., Rabello, M. Stress cracking and chemical degradation of poly(ethylene terephthalate) in NaOH aqueous solutions. Journal of Applied Polymer Science 2010; 118: 3089–3101. https://doi.org/10.1002/app.32748
  • 27. Altstaedt V., Keiter S., Renner M., Schlarb A. Environmental stress cracking of polymers monitored by fatigue crack growth experiments. Macromol Symp 2004; 214: 31–46. https://doi.org/10.1002/ masy.200451004.
  • 28. Turcyl datasheet PMMA.
  • 29. Exolon datasheet.
  • 30. Choi B., Chudnovsky A., Sehanobish K. Stress cor- rosion cracking in plastic pipes: observation and modelling. International Journal of Fracture 2007; 145(1): 81–88.
  • 31. Bart J.C.J., Additives in polymers. Industrial Analysis and Applications 2005.
  • 32. Fried J.R., Polymer Science and Technology. Third edition 2014; 3–6 / 361–386.
  • 33. Ohama Y., Kobayashi T., Takeuchi K., Nawata K., Chemical resistance of polymethyl methacrylate concrete, International Journal of Cement Composites and Lightweight Concrete 1986; 8(2): 87–91. https://doi.org/10.1016/0262-5075(86)90003-5
  • 34. https://sklep.b.io-space.pl/odpornosc-tworzywsztucznych-odpornosc-chemiczna,24,1 08.07.2023
  • 35. https://tools.thermofisher.com/content/sfs/brochures/D20480.pdf, 08.11.2023
  • 36. Van Krevelen D. W., Te Nijenhuis K., Properties of polymers 2009. https://radary.info/temperatura-wody-w-baltyku 06.12.2023.
  • 37. Patent application: P.441463 invention application entitled: Test stand for assessing the impact of a liquid environment on a mechanically loaded sample, especially one tested for corrosion. 2022 (in Polish)
  • 38. Hdiji, S., Namouchi, F., Medhioub, H., Guermazi, H., Guermazi, S., Castellon, J., Toureille, A.. Thermally stimulated depolarization current analysis to the determination of polarization and relaxation parameters in aged PMMA. Mater Sci Eng, 2010; 13: 012018.
  • 39. Redjala, S., Ferhoum, R., Aït Hocine, N. et al. Degradation of polycarbonate properties under thermal aging. J Fail. Anal. and Preven 2019; 19: 536–542. https://doi.org/10.1007/s11668-019-00630-0.polycarbonate catheter connectors, Engineering
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-958125af-af16-478b-8c0b-5f6cf45aaadf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.