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Abstract: In this paper we study asymptotic properties of mul-
tidimensional Lasota equation. We give the conditions of its stability
and chaos in the sense of Devaney in Orlicz spaces LP for any p > 0.
We also give criteria when the semigroup generated by the equation
has not asymptotic behaviour.
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1. Introduction

The purpose of the present paper is to show some asymptotic properties of the
dynamical systems described by some first order partial differential equations.
Our main object is the multidimensional equation

d

0
—+ ci(x)az_zvu for t>0,ze€D, vyeR, deN (1.1)

with the initial condition
u(0,z) = v(z) for z € D (1.2)

where v belongs to some normed vector space V' of functions defined on D. We
assume that
x
D= {xERi\{O}: |z] <g<|?)}u{0}
is a compact set. Here |z| denotes the distance of the point x from the origin,
g:SINRY — Ry \ {0} is a continuous function, S¢~! denoting the unit
sphere in R?.
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Here and subsequently ¢ : D — R%, ¢ = (c1,...,cq) is continuously differen-
tiable function satisfying

¢i(0)=0, ¢i(x) >0 forxe D\{0},i=1,...,d. (1.3)

We call (1.1) the multidimensional Lasota equation. In general, equation (1.1)
may be used to describe the growth of cell populations, which constantly differ-
entiate (change their properties) in time. In the model, x = (x1,...,24) denotes
the degrees of differentiation (maturity) for different d cell groups. The vector
¢ denotes the velocities of the cell differentiation. The inequality in condition
(1.3) points out irreversibility of the differentiation process.
The Lasota equation in its basic form is
Ju ou
T + c(x)a—x = f(z,u).

This equation is a mathematical description of a particular population, such as
a population of red blood cells, see Wazewska—Czyzewska and Lasota (1976).
It is the element of the so-called precursor cells model (see Lasota, Mackey and
Wazewska—Czyzewska, 1981). Multidimensional version of the equation is a par-
ticular case of the Fredrickson equation describing structured, segregated model
of microbial growth (see, for example, Ramkrishna, 1979). In the Fredrickson
model physiological state of a cell is described by a finite dimensional vector
and D is the region of the admissible states. Because of biological applica-
tion, the Lasota equation as well as its multidimensional version is a matter
of interest of many mathematicians: Brzezniak and Dawidowicz (2009), Loskot
(1985, 1991), Rudnicki (1985), Lasota and Szarek (2004), Bielaczyc (2010),
Leszczynski, (2008), Leszczyriski and Zwierkowski (2007).

Equation (1.1) with the initial condition (1.2) generates a semigroup (7%):>0
acting on some space V. The behaviour of this dynamical system depends upon
the parameter v. We consider asymptotic properties of the multidimensional
Lasota equation in LP space for p > 0. These spaces are particular cases of
Orlicz spaces. Since p(D) < oo, the space LP(D) is also separable for p < 1
(see, for instance, Maligranda, 1989). Hence all results can be considered not
only for p > 1, but also p < 1.

This work is a generalization of some results from Brzezniak and Dawid-
owicz (2007) and Dawidowicz and Poskrobko (2008). These papers treat the
asymptotic properties of the one-dimensional Lasota equation with ¢(z) = z in
LP spaces. In these cases the decisive value of the coefficient v is —1. It means
that the solution of the one-dimensional equation displays chaotic behaviour in
the sens of Devaney for v > —2 and is strongly stable for v < —1. There are
no situations of the lack of regularity in asymptotic behaviour of the dynamical
system (7%)¢>o for one-dimensional equation. The novel contribution of our re-
search is introducing multidimensionality into the equation and also latitude in
the choice of the function ¢(x). Furthermore, we apply topological properties of
the set D and divergence of the vector c to the estimation of the decisive value
of the coefficient ~.
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The paper is organized as follows. In Section 2 we introduce some definitions
and notations appearing subsequently. In particular, we recall the notation of
Orlicz spaces and introduce some of their basic properties. In Section 3 the
explicit formula for the semigroup (7%):>0 is provided. Section 4 contains chaos
and stability criteria for dynamical system connected with the multidimensional
Lasota equation.

2. Preliminaries

In this section we list the principal definitions, notations and symbols (see Ma-
ligranda, 1989; Musielak, 1983).

Definition 2.1. Let X be a real vector space. A functional p : X — [0,00] is
called a modular, if it satisfies the conditions
i) p(x) =0 iff £ =0,

it) p(—z) = p(x),

i) plaz + By) < p(x) + p(y) forz,ye X, o, 20, a+ 5 =1.
If we replace iii) by the condition

i) plax + By) < a®p(x) + Bop(y) for o, 20, a® + ° =1,
then the modular p is called s-convex. 1-convexr modulars are called conves.

The modular space generated by p is the subspace
XPZ{xéX:)l\li)r(lJp()\x)ZO}.

Definition 2.2. Let X be a vector space. A functional x — || is called F-norm
if for arbitrary x,y € X there holds
i) || =0 iff z =0,
i) |z 4yl <zl + lyl,
iii) for each scalar a there is |ax| = |z| when |a| =1,
i) for each scalars ay, and a if ar, — a and |z, —x| — 0 then |agry —ax| — 0.

Definition 2.3. A ¢-function is a function ¢ : Ry — Ry, where Ry = [0, 00)
such that
1) @ is continuous,
ii) ¢ is nondecreasing,
iii) (0) =0,
i) p(u) = 00 as u — oo.

Let (2, %, 1) be a measurable space, where ) is a nonempty set, 3 is a o-
algebra of subsets of 2 and p is a nontrivial, nonnegative, complete measure.
Let X be the set of all real-valued functions on €2, Y-measurable and finite
p-almost everywhere functions on 2. Then for every x € X

M@=AwW@Wu
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is a modular in X. Moreover, if ¢ is convex ¢-function, then p is a convex
modular in X.

Definition 2.4. The modular space X, will be called an Orlicz space denoted
by L¥(Q, %, 1) (or briefly L?):

LY = {:v eX: /Qcp()\|:v(t)|)du —0as A— 0+} .
Moreover, the set
25 ={oex: [ pllathan <
will be called the Orlicz class. In a modular space X,

|a:|F_inf{s>O:/<p(It))dugs}
Q s

is a F-norm. If ¢ is convex then the functional
Jaci)

||;1;|L_inf{s>o;/9¢(@

S
is a norm in L¥, called the Luxemburg norm. It is known that the space L¥
with the norm ||z||* is a Banach space.

EXAMPLE 1. The LP spaces are examples of the Orlicz spaces with the modular
p(x) = [ x(t)|Pdp, which is convex for p > 1. The modular p is p-convez for
0 < p < 1, and such Orlicz space is only the Fréchet space with the F-norm
lz|F = [ |x(t)[Pdp. It is known that the Banach space is also the Fréchet space
with F-norm |x|f = ||z||L. In the case of LP spaces for p > 1 the Luzemburg

norm s given by
’ :
i<y = ([ oran)
Q

|z||X = inf {s >0: /
Q

In general case L§ is a convex subset of L?, but if o(z) = 2P, p > 0, then
Ly =L¥.

x(t)

S

Definition 2.5. A function vg € V is a periodic point of the semigroup (Tt)i>0
with a period to > 0 if and only if Tiy,vo = vo. A number tog > 0 is called a
principal period of a periodic point vy if and only if the set of all periods of vy
18 equal Ntg.

Definition 2.6. The semigroup (Tt)i>0 is strongly stable in V if and only if for
everyv €V,

lim Tyv =0 in V.

t—o0
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Definition 2.7. The semigroup (T;)i>o0 is exponentially stable when its trivial
solution is exponentially stable i.e. there exists M < oo and w > 0 such that

Tl < Me ™t fort > 0.

We are going to study chaotic behaviour of the semigroup (73)i>0. We
use there Devaney’s definition of chaos. Recall that according to Devaney a
dynamical system (F});>o defined in a metric space (V, g) is chaotic as

o (Fy)i>o is transitive, that is for all nonempty open subsets Uy, Us C V

there exists ¢ > 0 such that Fy(U;) N Us # 0;

e the set of periodic points of the system (F});>o is dense in V.

The original Devaney’s definition (see Devaney, 1989) also contained the notion
of sensitive dependence on initial conditions in the sense of Guckenhaimer but
it was proved that this property appears immediately from transitivity of the
system and density of the set of its periodic points. The appropriate proofs can
be found in Banks et al. (1992)(for systems discrete in time) and Banasiak and
Lachowicz (2002) with references therein (for the continuous case).

3. The semigroup (7}):>0

The problem (1.1)-(1.2) has a unique, nonnegative solution u(t, x) (see Lasota,
1981; Lasota and Szarek, 2004). Using the method of characteristics we can
write the solution in the explicit form. We quote the sketch of the proof after
Lasota (1981). This gives an opportunity to introduce some notation. We denote
by ¢(t;0,s) = (¢1(t;9, S)y. .. ,¢d(t;6‘,s)), 0 > 0, s € D, the unique solution of
the system of equations

dz i
dt

=c¢(z), i=1,...,d (3.1)

with the initial conditions x;(0) = s;. We also write ¢s(t) = ¢(t;0,s), where
¢s(t) = (@E(t),...,¢%(t)). From (1.3) it follows that ¢(¢; 6, s) is nonnegative and
nondecreasing function of ¢. Since ¢;(0) =0,¢=1,...,d, the solution is defined
for t € [0,6]. The function ¢s(¢) is defined for s € D and ¢ € [0, 7(s)], where 7(s)
is the first point such that ¢s(7(s)) € Fr(D) i.e. 7(s) = inf{o : ¢s(0) € Fr(D)}.
The solution ¢ (t) = 0 is defined for all ¢ > 0, therefore 7(0) = co. Let v (t;s,7)
denote the unique solution of the equation

dy _

o =Y for 0<t<7(s) (3.2)

with the initial condition y(0) = r, where (r,s) € [0,00) x D.
The solutions (¢s(t),1(t;s,7)) are characteristics of equation (1.1). Thus we
have

u(t, ¢s(t)) = ¢(t;s,7),
u(t, gs(t)) = ret
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where r = u(0, ) = v(s). Substituting s — ¢(0; £, ) we obtain ¢, (t) — & and
u(t,z) = Y (t; p(0; ¢, ), v(p(0; 1, 2))) = "0 (¢(0; 8, 2))
for (t,z) € [0,00) x D. If the function
Tyw(z) = u(t,z) = e"'v(4(0;t, 7)) (3.3)

belongs to V for v € V and ¢ > 0, then the family (7}):>0 is a semigroup
acting on V. Our purpose is to study chaos and stability conditions of this
semidynamical system.

Lemma 3.1. Let ¢ satisfy the system of equations (3.1), f € LP(D) and D' =
@(0;¢, Dy), where Dy C D, (Do) > 0. Then

f(&(t;0,2)) dx = f(z)e™ Jg dive(@(0is,2))ds g,
D’ Do

Proof: Let ¢ = ((;51, ceey gbd) be the solution of the system of equations (3.1).
Fix o (t) = %ﬁm); i,k =1,...,d. By the differentiation with respect to ¢
we obtain (see, for instance, Hartman, 1964)

d

o (t) = Z 9ci (6(£;0, 2)) - aji(t)

j=1
i (0) = dik

Using the notation X (t) = [a,(t)] and A(t) = [%ﬁo’z))] we can express (3.4)
in the form of the matrix equation X’(t) = A(t)X (¢). By Liouville’s formula (see
Teschl, 2012), det X () = efo T(AE)ds T this case tr(A(t)) = div ¢ (¢(£;0, z)).
Integrating by substitution we get

z=¢(t;0,)
r = ¢(0;t, 2)
f(o(t;0,2)) dx dz = elo dive(d(s;0,2))ds jq
. da — e~ Jo dive(@(03s,2))ds 4.,
Dy = ¢(t;0,D")

F(z)e™ Jo dive(@(©s,2)ds g,
Dy

4. Asymptotic properties

Theorem 4.1. If v > —% liminf, o dive(x), then for any to > 0 there exists
a periodic point vo € LP(D) of the dynamical system (Tt)i>0-
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Proof: Let Dy = {x € D : 7(x) < to} and let w be an arbitrary function
belonging to LP(Dy). Let D, = {z € D : ntg < 7(x) < (n+ 1)tg}. We can
define a function vy on the set D by ”squeezing” the graph of the function w
into the sets D,,. We put

vo(z) = { e "how (¢(nt; 0,z)) for z € D,

0 for € D\ D, (4.1)

The function vy constructed in the above manner is the periodic point of the
dynamical system (7%):>0

Tiyvo(w) = €7 e™" 0w (¢(nto; 0, $(0; to, 7)) = e~ Dw (¢((n — 1)t; 0, 7)) .

It is sufficient to prove that vy belongs to LP space.
/ lvg(z)[Pdx = Z/ |vo(z)|Pdx = Z/ }eﬂwt“w (¢(nto; 0, a:))}p dzx
D n=0 D, n=0 D
= Ze—nvtop/ |w(p(nto; 0, x))|Pdx
n=0 Dn,

oo
_ Z e—nvtop/ |w(z)|pe— fomo div c(¢(0;s,z))dsdz
n=0 Do

N

%)
Z e_"VtOP / |w(z)|pe—nt0 infyep,, div c(m)dz
n=0 Do

- |U}(Z)|pdz e*nto('yp+infz€Dn div c(m))
IRCCED>

n=0
For all € > 0 there exists ng such that inf,ep, dive(x) > liminf, o dive(z) —¢
for all n > ng. For n large enough vp + inf,ep, dive(z) > vp + liminf, o
dive(x) —e. This is true for all e > 0, so vp + infyep, dive(z) > p +
liminf,_,o dive(z) > 0. The series Y o e~ o(yptinfeen, dive(z)) jg convergent.
This gives the conclusion vy € LP(D) because of the assumption w € LP(D). &

Theorem 4.2. If v > —% -liminf,_,odive(z), then the set of periodic points
of (1.1) is dense in the LP(D) space.

Proof: Let w be an arbitrary function from LP(D) space and let € > 0. Define
v by the formula (4.1). Fix ¢ so large that |w|§\D0 < 5 and |v|g\D0 < 5. For
x € Dy v(xz) = w(z), so finally we have

v —wlp = v —wlp\p, < VIb\p, +wlHp, <e.
This completes the proof. [ |

Theorem 4.3. Ifv > —%-lim inf, o div c¢(x) then the dynamical system (T})¢>0
is transitive in the LP(D) space.
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Proof: Let

B(’Ul,El) = {U S LP(D) : |’U1 — Ulg < 61}
and

B(’UQ,EQ) = {U S LP(D) : |’U2 — Ulg < 62}

be two open balls with centers in vi,vs € LP(D). Let us define the following
function

B 1 () for x€ Dy
w0 ={ o ko) o

at the suitable choice of ¢, where D, = {z € D : 7(z) < t}. We should show
that the above function w belongs to the space LP(D):

| w@pra = [ o)+ /| @
= /D t [v1 (@) [Pdx + / le "y (¢(L; 0, 2)) [Pda

D\D,

= [ m@rds e [ e fi v,
Dy D

N

/ |,Ul(x)|pdx_’_eft(»prrianEDdivc(m))/ |U2($)|pd$€.
Dy D

The exponent ¢ (yp + inf,e p div ¢(x)) is positive and finite at the suitable choice
of t. Therefore, w € LP(D). It results from the fact that vy, ve € LP(D). Then

o1 —w|p = |or— w|g\Dt < |U1|£\Dt + |w|g\Dt'

By the estimation it turns out that for ¢ large enough we obtain |v; — w|f <
€1, hence w € B(vy,e1). Therefore, Tyw € Ty (B(vi,e1)) and vo = Tyw €
B(vg,e2). We learn from the above that the intersection two sets B(vz,e2) and
T; (B(v1,e1)) is not empty. So we get the conclusion about transitivity of the
dynamical system (7});>0 in the space L?(D). [ |

As proved by Banks et al. (1992) the sensitive dependence of the dynamical
system on initial conditions in the sense of Guckenhaimer appears immediately
from its transitivity and density of the set of its periodic points. That is ex-
pressed by the following corollary.

COROLLARY 1. Ifvy > —1—17 Jdiminf, o dive(x) then the dynamical system (Ty)i>o0
is chaotic in the sense of Devaney in the LP(D) space.

Theorem 4.4. If v < —% -limsup,_,odive(x) then the semigroup (T})i>o is
strongly stable in the LP(D) space.
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Proof: Let v € LP(D) be an arbitrary function.
/ |Tyw(z)|Pdz = / |e"*tv (¢(0; t,x))|p dx
D D
_ e'ypt/ |’U(.’L')|p€f(; divc(qﬁ(s;O,w))dsdw
Dy

< etp(’er% SUP,ep, divc(z)) / |’U(£L')|pd$
Dy
Let € > 0. We have sup,¢p, divc(z) < limsup,_,, div c(z) 4 ¢ for large enough
t. Thus, v + %supmeDt dive(z) < v+ % (limsup,_,odive(z) + ). This is true
for all e > 0, so v+ %supweDt div e(z) < 0. Hence |Tyv|5 — 0 as t — oo in the
space LP(D) for p > 0. This proves the strong stability of the system (7})¢>o0.
|

COROLLARY 2. If v < —% - limsup,_,odive(z) then the dynamical system
(Ty)e>0 is exponentially stabile in LP(D) for p > 1 with M = 1 and w =
v+ % sup,ep dive(x).

EXAMPLE 2. Let us consider the Lasota equation (1.1) with the initial condition
(1.2) in the space LP(D), p > 0 where D = Dy U Dy, D1 N Dy = and Dy, Dy

are invariant with respect to multiplication. Here

C(I) _ (:I:l7x27'-'7=rd) fOT X € Dl
| (21, 220,...,20q) for x € D>

and —%d <7y < —g. The dynamical system (Tt)t>0 is in the form

(Tyw)(z) = u(t,z) = e”tv(xe_t)}Dl + e"*tv(gce_%)}D2 :
Let us define two new dynamical systems on LP(D)
(THv)(z) = ev(ze™) and (Tv)(z) = e''v(ve™?").

It is clear that if supp v C D; then Tyv = Tjv, i = 1,2. The system (T})i>o
is strongly stable and (T#)i>o0 is chaotic due to Theorem 4.4 and Corollary 1,
respectively. We claim that the system (T)i>o is neither chaotic nor stable.
Assume that the system (Ty)t>0 s chaotic. Then there exists non-trivial periodic
trajectory i.e. there exist v € LP and to > 0 such that Ty, v = v for all n € N.
Furthermore, v = v|p, + v[p, where v|, € LP(D), i =1,2. It follows that

1 2 1
1}|D1 = ntoU|D1 = (Tntov|D1 + Tnt0v|D2)’D = Tnt0v|D1 .
1
We know that T&tov‘pl — 0, in contradiction with the above equality. It proves
the lack of chaotic behaviour for (T)i>o.
Since (T?)i>o is chaotic, there exists v € LP(D) and to > 0 such that Ta, v = v
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for all n € N. By the invariance of Da, Tpi,v|p, = Tgtov‘zb = v|p,. Hence,
T,5U|D2 - 0. Therefore, the system (T})i>0 is not stable.
This example shows that the dynamical system (3.3) is neither chaotic nor stable

fory e (—% -limsup,_,, div ¢(z); —% -liminf, o div c(:v)}
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