Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Four sets of rules for predicting the detonation product compositions of explosives have been investigated: the Kamlet-Jacobs, the KistiakowskyWilson, the modified Kistiakowsky-Wilson and the Springall-Roberts. These can result, for a given compound, in significantly differing detonation products and amounts of heat release. However the resulting detonation velocities D and detonation pressures P obtained for the compound using the Kamlet-Jacobs equations are generally quite similar, with the Kamlet-Jacobs rules leading to the D and P that are, on average, closest to the experimental. The fact that the variations among the D and P values are relatively small can be attributed to a balancing of opposing effects relating to the quantities of gaseous products and the heat releases. Accordingly, obtaining reasonable accuracy for D and P does not necessarily imply corresponding accuracy for the product composition and heat release that were used. The analysis presented explains the observations that D and P can be correlated with loading density alone, even though product compositions are known to change with density.
Rocznik
Tom
Strony
459--474
Opis fizyczny
Bibliogr. 37 poz., tab.
Twórcy
autor
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
autor
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
Bibliografia
- [1] Iyer S., Slagg N., Molecular Aspects in Energetic Materials, in: Structure and Reactivity, (Liebman J.F, Greenberg A., Eds.), VCH Publishers, New York, 1988, Ch. 7, 255-285.
- [2] Dlott D.D., Fast Molecular Processes in Energetic Materials, in: Energetic Materials. Part 2. Detonation, Combustion, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003, Ch. 6, 125-191.
- [3] Akhavan J., The Chemistry of Explosives, 2nd ed., Royal Society of Chemistry, Cambridge, U.K., 2004.
- [4] Fried L.E., Manaa M.R., Pagoria P.F., Simpson R.L., Design and Synthesis of Energetic Materials, Annu. Rev. Mater. Res., 2001, 31, 291-321.
- [5] Shackelford S.A., Role of Thermochemical Decomposition in Energetic Material Initiation Sensitivity and Explosive Performance, Cent. Eur. J. Energ. Mater., 2008, 5, 75-101.
- [6] Klapötke T.M., Chemistry of High Energy Materials, 2nd ed., Walter de Gruyter, Berlin/New York, 2012.
- [7] Politzer P., Murray J.S., Detonation Performance and Sensitivity: A Quest for Balance, in: Advances in Quantum Chemistry, Vol. 69, (Sabin J.R., Brandas E., (ds.), Elsevier, Amsterdam, 2014, Ch. 1, 1-30.
- [8] Kamlet M.J., Jacobs S.J., Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C,H,N,O Explosives, J. Chem. Phys., 1968, 48, 23-55.
- [9] Kamlet M.J., Dickinson C., Chemistry of Detonations. III. Evaluation of the Simplified Calculational Method for Chapman-Jouguet Detonation Pressures on the Basis of Available Experimental Information, J. Chem. Phys., 1968, 48, 43-50.
- [10] Kamlet M.J., Hurwitz H., Chemistry of Detonations. IV. Evaluation of a Simple Predictional Method for Detonation Velocities of C-H-N-O Explosives, J. Chem. Phys., 1968, 48, 3685-3692.
- [11] Urbański T., Chemistry and Technology of Explosives, Vol. 4, Pergamon Press, Oxford, U.K., 1984.
- [12] Shekhar H., Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives, Cent. Eur. J. Energ. Mater., 2012, 9, 39-48.
- [13] Politzer P., Murray J.S., Some Perspectives on Estimating Detonation Properties of C,H,N,O Compounds, Cent. Eur. J. Energ. Mater., 2011, 8, 209-220.
- [14] Mader C.L., Numerical Modeling of Explosives and Propellants, 2nd ed., CRC Press, Boca Raton, FL, 1998.
- [15] Lias S.G., Bartmess J.E., Liebman J.F., Holmes J.L., Levin R.D., Mallard W.G., Gas-Phase Ion and Neutral Thermochemistry, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. No. 1.
- [16] NIST Chemistry WebBook, NIST Standard Reference Database Number 69, (Linstrom P.J., Mallard W.G., Eds.), National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, http://www.nist.gov.
- [17] Politzer P., Lane P., Concha M C., Computational Approaches to Heats of Formation, in: Energetic Materials. Part 1. Decomposition, Crystal and Molecular Properties, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003, Ch. 9, 247-277.
- [18] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials, J. Phys. Chem. A, 2006, 110, 1005-1013; erratum: J. Phys. Chem. A, 2009, 113, 5813.
- [19] Politzer P., Martínez J., Murray J.S., Concha M.C., Toro-Labbé A., An Electrostatic Interaction Correction for Improved Crystal Density Predictions, Mol. Phys., 2009, 107, 2095-2101.
- [20] Politzer P., Martínez J., Murray J.S., Concha M.C., An Electrostatic Correction for Improved Crystal Density Predictions of Energetic Ionic Compounds, Mol. Phys., 2010, 108, 1391-1396.
- [21] Rice B.M., Byrd E.F.C., Evaluation of Electrostatic Descriptors for Predicting Crystalline Density, J. Comput. Chem., 2013, 34, 2146-2151.
- [22] Energetic Materials. Part 1. Decomposition, Crystal and Molecular Properties, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003.
- [23] Sućeska M., Calculation of Detonation Properties in EXPLO5 Computer Program, Mater. Sci. Forum, 2004, 465/466, 325-330.
- [24] Bastea S., Fried L.E., Glaesemann K.R., Howard W.M., Sovers P.C., Vitello P.A., CHEETAH 5.0, User’s Manual, Lawrence Livermore National Laboratory, Livermore, CA, 2006.
- [25] Grys S., Trzciński W.A., Calculation of Combustion, Explosion and Detonation Characteristics of Energetic Materials, Cent. Eur. J. Energ. Mater., 2010, 7, 97-113.
- [26] Rice B.M., Hare J., Predicting Heats of Detonation Using Quantum Mechanical Calculations, Thermochim. Acta, 2002, 384, 377-391.
- [27] Kerley G.I., Theoretical Model of Explosive Detonation Products: Tests and Sensitivity Studies, Proc. 9th Symposium (International) on Detonation, OCNR 113291-7, Office of Naval Research, Arlington, VA, 1989, 443-451.
- [28] Kamlet M.J., Proc. 6th Symposium (International) on Detonation, San Diego, CA, Report No, ACR 221, Office of Naval Research, Arlington, VA, 1976, 312-322.
- [29] Kamlet M.J., Adolph H.G., The Relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic explosives, Propell. Explos., 1979, 4, 30-34.
- [30] Meyer R., Köhler J., Homburg A., Explosives, 6th ed., Wiley-VCH, Weinheim, Germany, 2007.
- [31] Muthurajan H., Ang How Ghee, Software Development for the Detonation Product Analysis of High Energetic Materials, Cent. Eur. J. Energ. Mater., 2008, 5(3-4), 19-35.
- [32] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, J. Phys. Chem. A, 2006, 110, 1005-1013.
- [33] Sikder A.K., Maddala G., Agrawal J.P., Singh H., Important Aspects of Behavior of Organic Energetic Compounds: A Review, J. Hazard. Mater., 2001, A84, 1-26.
- [34] Kamlet M.J., Ablard J.E., Chemistry of Detonations. II. Buffered Equilibria, J. Chem. Phys., 1968, 48, 36-42.
- [35] LASL Explosive Property Data, (Gibbs T.R., Popolato A., Eds.), University of California Press, Berkeley, CA, 1980.
- [36] Zhang Q., Chang Y., Prediction of Detonation Pressure and Velocity of Explosives with Micrometer Aluminum Powders, Cent. Eur. J. Energ. Mater., 2012, 9, 77-86.
- [37] Keshavarz M.H., Estimating Heats of Detonation and Detonation Velocities of Aromatic Energetic Compounds, Propellants Explos. Pyrotech., 2008, 33, 448-453.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-957c3962-0b49-419d-838f-326c5e56721b