PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of polylactide, obtained from lactic acid in the process of lactic fermentation of lactose in whey post production (waste)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This publication provides a description of RDC Glokor’s own research into the effectiveness of the lactic fermentation process of lactose, lactic acid concentration and polylactide (PLA) production by ring-opening polymerization obtained from the condensation of two molecules of lactic acid. Furthermore, this publication sets out to determine potential applications of the PLA as a commercial material with a selection of thermal properties. Design/methodology/approach: In the described research works, a lactic fermentation process was used in which lactose is converted to lactic acid with the participation of Lactic Acid Bacteria. Polylactide was obtained indirectly by Ring Opening Polymerization and by direct polymerization, straight from lactic acid, omitting the intermediate stages. Next, the obtained lactide and polylactide were examined by spectroscopic methods (IR, NMR) to determine their purity. Thermal methods (TG, DSC) to determine thermoplastic properties, i.e. softening point, decomposition temperature and glass transition temperature. Findings: Obtained from waste whey, PLA and its copolymers are excellent biodegradable polymers that have the potential to be used in medicine as resorbable surgical strands, biopolymers for implant production, as well as in many industries including for the production of biodegradable bottles and disposable packaging, 3D printer cartridges. Research limitations/implications: The research on lactic acid and lactide polymerization described in this article is still a new issue that requires further research to optimize PLA processes with industry-specific thermoplastic and physicochemical properties. Originality/value: In the basic waste processing of milk, there is a large volume of whey sour, which is ecologically dangerous for waste treating. Due to the high content of lactose (up to 6%) this waste can be used as a raw material in the lactic fermentation process in which lactose is converted to lactic acid with the participation of lactic acid bacteria. Lactic acid can be concentrated and subjected to a dehydration process to lactide, which in the final stage is subjected to the process of ring-opening polymerization in order to produce biodegradable polylactide. The described process of carrying out the lactose contained in PLA whey is an innovative way to obtain a biodegradable usable polymer, which can be used to replace plastics such as polypropylene and polyethylene.
Słowa kluczowe
Rocznik
Strony
58--68
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
autor
  • Research and Development Centre GLOKOR Sp. z o. o., ul. Górnych Wałów 27A, 44-100 Gliwice, Poland
  • Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice, Poland
  • Research and Development Centre GLOKOR Sp. z o. o., ul. Górnych Wałów 27A, 44-100 Gliwice, Poland
  • Research and Development Centre GLOKOR Sp. z o. o., ul. Górnych Wałów 27A, 44-100 Gliwice, Poland
autor
  • Research and Development Centre GLOKOR Sp. z o. o., ul. Górnych Wałów 27A, 44-100 Gliwice, Poland
Bibliografia
  • [1] W. Bednarski, Development of by-products, Dairying selected issues, Publishing House ART, Olsztyn, 1997 (in Polish).
  • [2] W. Szczurek, Whey processing products and their use in fodder for broiler chickens – nutritional and physiological aspects, Zootechnical News 4 (2008) 41-52 ( in Polish).
  • [3] A. Pluta, A. Kratochwil, E. Domańska, Comparison of the production and management of rennet whey and acid in the aspect of environmental protection, Dairy Review 10 (2002) 448-452 (in Polish).
  • [4] J. Gajewska, M.K. Błaszczyk, Probiotic lactic acid bacteria (LAB), Advances in Microbiology 51 (2012) 55-65 (in Polish).
  • [5] M. Jurkowski, M. Błaszczyk, Physiological and biochemical characteristics of lactic acid bacteria, Kosmos Problems of Biological Sciences 61 (2012) 493-504 (in Polish).
  • [6] C. Rohde, R. Nawrotzki, J. Jager, Laboratory and technical research of organic fermentation of organic waste, Environmental Protection 1 (2007) 41-44 (in Polish).
  • [7] Z. Libudzisz, Probiotics and prebiotics in fermented milk beverages, Contemporary Pediatrics. Gastroenterology, Hepatology and Child Nutrition 4 (2002) 19-25 (in Polish).
  • [8] Z. Libudzisz, K. Kowal, Technical microbiology, Vol. II, Publisher: Lodz University of Technology, Łódź, 2000 (in Polish).
  • [9] Z. Libudzisz, K. Kowal, Z. Żakowska, Technical microbiology, Vol. I, PWN, Warszawa, 2007 (in Polish).
  • [10] G. Giori, G. de Valdez, A. de Ruiz Holgado, G. Oliver, Effect of pH and temperature on the proteolytic activity of lactic bacteria, Journal of Diary Science 68/9 (1985) 2160-2164, DOI: https://doi.org/10.3168/jds.S0022-0302(85)81085-7.
  • [11] P. Pietraszek, K. Dybka, P. Walczak, A. Otlewska, A. Rygała, E. Ołtuszak-Walczak, Microbiological production of lactic acid from the dairy industry for the production of lactic acid from renewable raw materials, Polish Journal of Agronomy 16 (2010) 45-56.
  • [12] S. Maślanka, M. Siołek, Ł. Hamryszak, D. Łopot, The use of waste from the dairy industry for the production of biodegradable polymers, Chemist 6 (2014) 11-14 (in Polish).
  • [13] J. Jim Jem, J.F. van der Pol, S. de Vos, Microbial lactic acid, its polymer poly(lactic acid)and their industrial applications. Plastics from bacteria. Natural functions and applications, Springer-Verlag, Berlin Heidelberg, 2010.
  • [14] R. Malinowski, D. Łubkowski, Study on the influence of temperature and drying time on selected polylactide properties (PLA), Engineering and Chemical Apparatus 49 (2010) 77-78 (in Polish).
  • [15] R. Auras, L.T. Lim, S.E.M. Selke, H. Tsuji, Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications, John Wiley& Sons, Hoboken, New Jersey, 2010, 68-80.
  • [16] J. Pelouze, Ueber die Milchsӓure, J. Chem. Pharm. 53/1 (1845) 112-124.
  • [17] M.H. Hartmann, D. Kaplan, Biopolymers from renewable resources, Springer, Berlin, 1998, 367.
  • [18] A.J. Nieuwenhuis, Synthesis of polylactides, polyglicolies and their copolymers, Clinical Materials 10 (1992) 59-67.
  • [19] D.K. Yoo, D. Kim, D.S. Lee, Reaction Kinetics for the Synthesis of Oligomeric Poly(lactic acid), Macromolecular Research 13/1 (2005) 68-72, DOI: https://doi.org/10.1007/BF03219017.
  • [20] F. Achmad, K. Yamane, S. Quan, T. Kokugan, Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators, Chemical Engineering Journal 151/1-3 (2009) 342-350, DOI: https://doi.org/10.1016/j.cej.2009.04.014.
  • [21] Z. Lei, Y. Bai, S. Wang, Synthesis of high molecular weight polylactic acid from aqueous lactic acid co-catalyzed by tin(II)chloride dehydrate and succinic anhydride, Chinese Science Bulletin 50/20 (2005) 2390-2392, DOI: https://doi.org/10.1360/982005-1208.
  • [22] S.I. Moon, Y. Kimura, Melt polycondensation of L-lactic acid to poly(L-lactic acid) with Sn(II) catalysts combined with various metal alkoxides, Polymer International 52/2 (2003) 299-303, DOI: https://doi.org/10.1002/pi.960.
  • [23] S.I. Moon, C.W. Lee, I. Taniguchi, M. Miyamoto, Y. Kimura, Melt/solid polycondensation of l-lactic acid: an alternative route to poly(l-lactic acid) with high molecular weighht, Polymer 42/11 (2001) 5059-5062, DOI: https://doi.org/10.1016/S0032-3861(00)00889-2.
  • [24] V.L. Lassalle, M.L. Ferreira, Lipase-catalyzed synthesis of polylactic acid: an overview of the experimental aspects, Journal of Chemical Technology and Biotechnoligy 83/11 (2008) 1493-1502, DOI: https://doi.org/10.1002/jctb.1994.
  • [25] A. Duda, S. Pęczek, Polylactide [poly (lactic acid)]: synthesis of properties and applications, Polymers 48/1 (2003) 16-27 (in Polish).
  • [26] R.R. Gowda, D. Chakraborty, Copper acetate catalyzed bulk ring opening polymerization of lactides, Journal of Molecular Catalysis A: Chemical 349/1-2 (2011) 86-93, DOI: https://doi.org/10.1016/j.molcata.2011.08.024.
  • [27] J. Wahlberg, P. Persson, T. Olsson, E. Hedestrom, T. Iversen, Structural characterization of a lipase catalysed copolymerization of ε-caprolactone and D,L- lactide, Biomacromolecules 4/4 (2003) 1068-1071, DOI: https://doi.org/10.1021/bm0340725.
  • [28] B.J. O’Keefe, M.A. Hillmyer, W.B. Tolman, Polymerization of lactide and related cyclic esters by discrete metal complexes, Journal of Chemical Society, Dalton Transactions (2001) 2215-2224.
  • [29] M. Hu, M. Wang, p. Zhang, K. Jin, Y. Chen, L. Sun, Polymerization of rac-lactide catalyzed by group 4 metal complexes containing chiral N atoms, Polymer Bulletin 68/7 (2012) 1789-1799, DOI: https://doi.org/10.1007/s00289-011-0647-0.
  • [30] V. Simic, V. Girardon, N. Spassky, L.G. Hubert-Pfalzgraf, A. Duda, Ring-opening polymerization of lactides initiated with yttrium Trisisopropoxyethoxide, Polymer Degradation and Stability 59/1-3 (1998) 227-229, DOI: https://doi.org/10.1016/S0141-3910(97)00200-0.
  • [31] Z. Zhong, S. Chneiderbauer, P.J. Dijkstra, M. Westerhausen, J. Feijen, Single-Site Calcium Initiators for the Controlled Ring-Opening Polymerization of Lactides and Lactones, Polyme rBulletin 51/3 (2003) 175-182, DOI: https://doi.org/10.1007/s00289-003-0211-7.
  • [32] M. Ajioka, K. Enomoto, K. Suzuki, A. Yamaguchi, The basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid, Journal of Enviromential Polymer Degradation 3/4 (1995) 225-234, DOI: https://doi.org/10.1007/BF02068677.
  • [33] S. Fehri, P. Cinelli, M.B. Coltelli, I. Anguillesi, A. Lazzeri, Thermal Properties of Plasticized Poly (Lactic Acid) (PLA) Containing Nucleating Agent, International Journal of Chemical Engineering and Applications 7/2 (2016) 85-88, DOI: https://doi.org/10.7763/IJCEA.2016.V7.548.
  • [34] L. Bӗhálek, M. Maršálková, P. Lenfeld, J. Habr, J. Bobek, M. Seidl, Study of crystallization of polylactic acid composites and nanocomposites with natural fibres by dsc method, Proceedings of the NANOCON 2013 Conference, 2013, Brno, Czech Republic.
  • [35] N. Cristian-Andi, A.G. Margareta, G.R. Augusta, An Investigation of Thermal Degradation of Poly(Lactic Acid), Engineering Letter 16/4 (2008) EL_16_4_16.
  • [36] R.Z. Khoo, H. Ismail, W.S. Chow, Thermal and Morphological Properties of Poly (lactic acid)/Nanocellulose Nanocomposites, Procedia Chemistry 19 (2016) 788-794, DOI: https://doi.org/10.1016/j.proche.2016.03.086.
  • [37] J. Rak, J.L. Ford, C. Rostron, V. Walters, The preparation and characterization of poly(D,L-lactic acid) for use as a biodegradable drug carrier, Pharmaceutica Acta Helvetiae 60/5-6 (1985) 162-169.
  • [38] A. Schindler, D. Harper, Polylactide. II. Viscosity-molecular weight relationships and unperturbed chain dimensions, Journal of Polymer Science Part A: Polymer Chemistry 17/8 (1979) 2593-2599, DOI: https://doi.org/10.1002/pol.1979.170170831.
  • [39] S. Porejko, J. Fejgin, L. Zakrzewski, Chemistry of macromolecular compounds, WNT, Warszawa, 1972 (in Polish)
  • [40] A. Łędzki, S. Spychaj, T. Spychaj, Molecular weight and polydispersity of polymers, PWN, Warszawa, 1987 (in Polish).
  • [41] B. Eling, S. Gogolewski, A.J. Pennings, Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres, Polymer 23/11 (1982) 1587-1593, DOI: https://doi.org/10.1016/0032-3861(82)90176-8.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9577f684-d92f-494b-a7c1-3efede0273c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.