PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-local Kirchhoff–Love plates in terms of fractional calculus

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern continuum mechanics needs new mathematical techniques to describe the complexity of real physical processes. Recently fractional calculus, a branch of mathematical analysis that studies differential operators of an arbitrary (real or complex) order, emerged as a powerful tool for modelling complex systems. It is due to the fact that fractional differential operators introduce non-locality to the description considered in a natural way. In this sense they generalize classical (local) formulations and make the description more realistic. This paper deals with the generalisation of the Kirchhoff–Love plates theory using fractional calculus. This new formulation in non-local, thus all common fields like e.g. internal forces or displacements at a specific point contain somehow information from its finite surroundings, which is in agreement with experimental observations.
Rocznik
Strony
231--242
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Poznan University of Technology, Institute of Structural Engineering, Piotrowo 5 Street, 60-969 Poznan, Poland
Bibliografia
  • [1] O. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, Journal of Physics A 40 (24) (2007) 6287– 6303.
  • [2] E. Aifantis, Strain gradient interpretation of size effects, International Journal of Fracture 95 (1999) 299–314.
  • [3] T. Atanackovic, B. Stankovic, Generalized wave equation in nonlocal elasticity, Acta Mechanica 208 (1–2) (2009) 1–10.
  • [4] R. Borst, J. Pamin, Some novel developments in finite element procedures for gradient-dependent plasticity, International Journal for Numerical Methods in Engineering 39 (1996) 2477– 2505.
  • [5] A. Carpinteri, P. Cornetti, A. Sapora, A fractional calculus approach to nonlocal elasticity, European Physical Journal Special Topics 193 (2011) 193–204.
  • [6] M. Ciesielski, J. Leszczyñski, Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz– Feller fractional derivative, Journal of Theoretical and Applied Mechanics 44 (2) (2006) 393–403.
  • [7] M. Di Paola, G. Failla, M. Zingales, Physically-based approach to the mechanics of strong non-local linear elasticity theory, Journal of Elasticity 97 (2) (2009) 103–130.
  • [8] W. Dornowski, P. Perzyna, Numerical analysis of macrocrack propagation along a bimaterial interface under dynamic loading processes, International Journal of Solids and Structures 39 (2002) 4949–4977.
  • [9] C. Drapaca, S. Sivaloganathan, A fractional model of continuum mechanics, Journal of Elasticity 107 (2012) 107– 123.
  • [10] G. Frederico, D. Torres, Fractional Noether's theorem in the Riesz–Caputo sense, Applied Mathematics and Computation 217 (2010) 1023–1033.
  • [11] S. Germain Remarques sur la nature, les bornes et l'etendue de la question des surfaces elastiques et equation general de ces surfaces, Paris, 1826.
  • [12] K. Girkmann, flächentragwerke: Einführung in die Elastostatic der Scheiben, Platten, Schalen und Faltwerke, Springer-Verlag, Wien, 1956.
  • [13] G. Holzapfel, Nonlinear Solid Mechanics – A Continuum Approach for Engineering, Wiley, England, 2000.
  • [14] J. Lagrange, Annali di Chimica 39 (1828) 149–207.
  • [15] K. Lazopoulos, Non-local continuum mechanics and fractional calculus, Mechanics Research Communications 33 (2006) 753–757.
  • [16] G. Leibniz, Mathematische Schriften, Georg Olms Verlagsbuch-handlung, Hildesheim, 1962.
  • [17] J. Leszczyñski, An Introduction to Fractional Mechanics. Monographs No. 198, The Publishing Office of Czestochowa University of Technology, 2011.
  • [18] J. Marsden, T. Hughes, Mathematical Foundations of Elasticity, Prentice-Hall, New Jersey, 1983.
  • [19] Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives, Applied Mathematics and Computation 178 (2006) 527–533.
  • [20] T. Łodygowski, P. Perzyna, Localized fracture of inelastic polycrystalline solids under dynamic loading process, International Journal Damage Mechanics 6 (1997) 364–407.
  • [21] R. Pęcherski, Relation of microscopic observations to constitutive modelling for advanced deformations and fracture initiation of viscoplastic materials, Archives of Mechanics 35 (2) (1983) 257–277.
  • [22] R. Pęcherski, Discussion of sufficient condition for plastic flow localization, Engineering Fracture Mechanics 21 (4) (1985) 767–779.
  • [23] P. Perzyna, Termodynamika materiałów niesprężstych. PWN, Warszawa, 1978 (in Polish).
  • [24] P. Perzyna, The thermodynamical theory of elasto-viscoplasticity, Engineering Transactions 53 (2005) 235–316.
  • [25] W. Sumelka, Fractional deformation gradients, in: 7th International Workshop on Dynamic Behaviour of Materials and its Applications in Industrial Processes, Madrid, Spain, 8– 10 May, (2013), pp. 54–55.
  • [26] W. Sumelka, Role of covariance in continuum damage mechanics, ASCE Journal of Engineering Mechanics 139 (11) (2013) 1610–1620.
  • [27] W. Sumelka, Fractional viscoplasticity, Mechanics Research Communications 56 (2014) 31–36.
  • [28] W. Sumelka, T. Łodygowski, The influence of the initial microdamage anisotropy on macrodamage mode during extremely fast thermomechanical processes, Archive of Applied Mechanics 81 (12) (2011) 1973–1992.
  • [29] W. Sumelka, T. Łodygowski, Reduction of the number of material parameters by an approximation, Computational Mechanics 52 (2013) 287–300.
  • [30] L. Vazquez, A fruitful interplay: from nonlocality to fractional calculus, in: F. Abdullaev, V. Konotop (Eds.), Nonlinear Waves: Classical and Quantum Aspects,, Kluwer Academic Publishers, Netherlands, 2004, pp. 129–133.
  • [31] G. Voyiadjis, R. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter, International Journal of Solids and Structures 42 (14) (2005) 3998–4029.
  • [32] G. Voyiadjis, D. Faghihi, Localization in stainless steel using microstructural based viscoplastic model, International Journal of Impact Engineering 54 (2013) 114–129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9575f738-9d94-4b54-98fd-c687d0d03271
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.