PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grid-side current harmonic suppression based on Butterworth filter and quasi-proportional resonance controller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to meet the lightweight requirements of high-speed trains, the inductancecapacitance (LC) resonance circuits are cancelled in the traction drive system of some high-speed electric multiple units (EMUs) in China, which will lead to large low-order current harmonics on the grid side in the traction drive system of EMUs, seriously affecting the power quality. Therefore, the low-order harmonic current of the traction drive system of an EMU is studied in this paper. Firstly, the working principle of a four-quadrant pulse rectifier in a traction drive system is analyzed, and then the generation mechanism of loworder current harmonics on the grid side is studied deeply. Secondly, the voltage outer loop and current inner loop control of a four-quadrant pulse rectifier are optimized respectively. In the voltage outer loop control, a Butterworth filter is designed to suppress the beat frequency voltage of the DC side voltage, so as to indirectly suppress the low-order current harmonics. In the current inner loop, a quasi-proportional resonance (PR) controller with harmonic compensation is used to suppress low-order current harmonics, and a novel loworder current harmonics suppression strategy based on the Butterworth filter and quasi-PR controller is proposed. Finally, the results of the simulated validation of the proposed control strategy show that compared with the existing method of the notch filter ₊ PR controller, the proposed optimal control strategy has a better effect on low-order current harmonic suppression, and improves the dynamic performance of the control system, further showing the correctness and effectiveness of the optimal control strategy.
Rocznik
Strony
909--929
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wz.
Twórcy
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China
  • Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou, China
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China
  • Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou, China
Bibliografia
  • [1] Zhang Maosong, Chi Bangxiu, Li Jiawang et al., Study on quasi-PR current coordinated control for active power filter, Power System Technology (in Chinese), vol. 43, no. 5, pp. 1614–1623 (2019), DOI: 10.13335/j.1000-3673.pst. 2018.0762.
  • [2] Laggoun Zakaria El Zair, Benalla Hocine, Nebti Khalil, Dual Virtual Flux-based Direct Power Control for rectifier under harmonically distorted voltage condition, Archives of Electrical Engineering, vol. 69, no. 4 (2020), DOI: 10.24425/AEE.2020.134641.
  • [3] Song Zhiwei, Huang Lu, Xiong Chenglin et al., Improved model predictive current control strategy for single-phase pulse rectifier, Power System Technology (in Chinese), vol. 44, no. 5, pp. 1845–1851 (2020), DOI: 10.13335/j.1000-3673.pst.2018.3016.
  • [4] Milasi Rasoul M., Lynch Alan F., Yunwei Li, Adaptive control of an active power filter for harmonic suppression and power factor correction, International Journal of Dynamics and Control, vol. 10, pp. 473–482 (2022), DOI: 10.1007/S40435-021-00825-0.
  • [5] Hu HeJun, Wang JunJia, Huang YiYun et al., Analysis and Suppression of Harmonic Characteristic for Multi-pulse Rectifier Based on Phase-shifting Transformer, Journal of Physics: Conference Series, vol. 2237, no. 1 (2022), DOI: 10.1088/1742-6596/2237/1/012003.
  • [6] Tamaskani Rohollah, Khodsuz Masume, Yazdani Asrami Mohammad, Optimal Design of C-Type Filter in Harmonics Polluted Distribution Systems, Energies, vol. 15, no. 4, pp. 1587–1587 (2022), DOI: 10.3390/EN15041587.
  • [7] Hang Yin, Zhiyong Dai, Xianzhang Lei, Tian Lan, Grid current low-order harmonics suppression of the three-phase grid converter with an LCL filter under the distorted grid voltage, The Journal of Engineering, vol. 2019, no. 7, pp. 4675–4680 (2019), DOI: 10.1049/joe.2018.8037.
  • [8] Wang Shunliang, Harmonic suppression and modulation method research for multilevel grid-side converter in electric railway traction, Master Thesis, Southwest Jiaotong University, Chendu (2016).
  • [9] Zhang Wen Ming, Li Yong Xin, Ge Xing Lai et al., Optimized Design of Double-Loops Controller for Single-Phase Pulse Rectifier without LC Resonant Filter Circuit, Advanced Materials Research, vol. 1061–1062, pp. 1031–1038 (2014), DOI: 10.4028/WWW.SCIENTIFIC.NET/AMR.1061-1062.1031.
  • [10] Gitanjali Pandove, Ashutosh Trivedi, Mukhtiar Singh, Repetitive control-based single-phase bidirectional rectifier with enhanced performance, IET Power Electronics, vol. 9, no. 5, pp. 1029–1036 (2016), DOI: 10.1049/iet-pel.2015.0282.
  • [11] Ali Muhammad Saqib, Wang Lei, Chen Guozhu, Design and control aspect of segmented proportional integral repetitive controller parameter optimization of the three phase boost power factor correction rectifier, International Journal of Circuit Theory and Applications, vol. 49, no. 3, pp. 554–575 (2020), DOI: 10.1002/CTA.2896.
  • [12] Phonsit Santiprapan, Apidet Booranawong, Kongpol Areerak et al., Adaptive repetitive controller for an active power filter in three-phase four-wire systems, IET Power Electronics, vol. 13, no. 13 (2020), DOI: 10.1049/iet-pel.2019.1401.
  • [13] Xiao Xiong, Wu Yujuan, Sun Guangda et al., Voltage-sensorless model predictive power control of PWM rectifier based on adaptive neural network observation, Proceedings of the CSEE, vol. 41, no. 3, pp. 1135–1146 (2021), DOI: 10.13334/j.0258-8013.pcsee.200926.
  • [14] Kang Longyun et al., Model Predictive Current Control with Fixed Switching Frequency and Dead-Time Compensation for Single-Phase PWM Rectifier, Electronics, vol. 10, no. 4 (2021), DOI: 10.3390/ELECTRONICS10040426.
  • [15] Tianbao Song et al., Suppression Method of Current Harmonics for Three-phase PWM Rectifier in EV Charging System, IEEE Transactions on Vehicular Technology, vol. 69, no. 9 (2020), DOI: 10.1109/tvt.2020.3005173.
  • [16] Meng Wang et al., A modified sliding-mode controller based mode predictive control strategy for three-phase rectifier, International Journal of Circuit Theory and Applications, vol. 48, no. 10, pp. 1564–1582 (2020), DOI: 10.1002/cta.2858.
  • [17] Song Wensheng, Jiang Wei, Liu Bi et al., Single-phase cascaded H-bridge rectifiers simplified model predictive current control, Proceedings of the CSEE, vol. 39, no. 4, pp. 1127–1138 (2019), DOI: 10.13334/j.0258-8013.pcsee.180205.
  • [18] Ma Junpeng et al., Model Predictive Direct Power Control for Single Phase Three-Level Rectifier at Low Switching Frequency, IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1050–1062 (2018), DOI: 10.1109/tpel.2017.2681938.
  • [19] Wang Na, Mu Yuanpeng, Harmonic current elimination for rectifiers based on n times notch filter and PR controller, Electric Drive for Locomotives, vol. 2, no. 16, pp. 61–66 (2015), DOI: 10.13890/j.issn.1000-128x.2015.02.016.
  • [20] Xiaohong Wang, Zhifeng Pan, Thi Thu Giang Hoang et al., New Repetitive Current Controller for PWM Rectifier, IFAC PapersOnLine, vol. 51, no. 4, pp. 154–159 (2018), DOI: 10.1016/j.ifacol.2018.06.118.
  • [21] Chen K.C. et al., Single phase inverter system using proportional resonant current control, International Journal of Power Electronics and Drive Systems, vol. 8, no. 4, pp. 1913–1918 (2017), DOI: 10.11591/ijpeds.v8i4.pp1913-1918.
  • [22] Zhang Ying, Wang Huimin, Ge Xinglai et al., DC-link stabilization method for metro traction converter-motor system based on feedforward voltage compensation, Proceedings of the CSEE, vol. 38, no. 9, pp. 2728–2735 ̧2842 (2018), DOI: 10.13334/j.0258-8013.pcsee.171145.
  • [23] Bi Kai et al., Virtual Flux Voltage-Oriented Vector Control Method of Wide Frequency Active Rectifiers Based on Dual Low-Pass Filter, World Electric Vehicle Journal, vol. 13, no. 2 (2022), DOI: 10.3390/WEVJ13020035.
  • [24] Liu Jianqiang, Liu Chuanduo, Wang Yiou et al., Fault diagnosis method for IGBT and DC-link capacitor of single-phase PWM rectifier, Transactions of China Electrotechnical Society, vol. 34, no. S1, pp. 244–257 (2019), DOI: 10.19595/j.cnki.1000-6753.tces.L80029.
  • [25] Majer K., The analysis of vibration of smoothing reactors working in single-phase rectifier systems, Przegląd Elektrotechniczny (in Polish), vol. 95, no. 8, pp. 53–56 (2019), DOI: 10.15199/48.2019.08.14.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9571c4de-fb03-495b-b520-84c4a6a5ed58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.