Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents a thermodynamic Aspen simulation model for Solid Oxide Fuel Cells, SOFCs, based power generation system. In the first step, a steady-state SOFCs system model was developed. The model includes the electrochemistry and the diffusion phenomena. The electrochemical model gives good agreement with experimental data in a wide operating range. Then, a parametric study has been conducted to estimate effects of the oxygen to carbon ratio, O/C, on reformer temperature, fuel cell temperature, fuel utilization, overall fuel cell performance, and the results are discussed in this paper. In the second step, a dynamic analysis of SOFCs characteristic has been developed. The aim of dynamic modelling was to find the response of the system against the fuel utilization and the O/C ratio variations. From the simulations, it was concluded that both developed models in the steady and dynamic state were reasonably accurate and can be used for system level optimization studies of the SOFC based power generation system.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
8--15
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Technology and Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Technology and Chemical Engineering, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Facci, A. L., Cigolotti, V., Jannelli, E. & Ubertini, S. (2017). Technical and economic assessment of a SOFC based energy system for combined cooling, heating and power. Appl. Energy, 192, 563–574. DOI: 10.1016/j.apenergy.2016.06.105.
- 2. Zhang, W., Croiset, E., Douglas, P. L., Fowler, M. W. & Entchev, E. (2005). Simulation of tubular solid oxide fuel cell stack using AspenPlusTM unit operation models, Energy Conv. Managem. 46. 181–196. DOI: 10.1016/j.enconman.2004.03.002.
- 3. Ameri, M. & Mohammadi, R. (2013). Simulation of an atmospheric SOFC and gas turbine hybrid system using Aspen Plus software. Inter. J. Energy Res. 37, 412–425. DOI: 10.1002/er.1941.
- 4. Anderson, T., Vijay, P. & Tade, M. O. (2014). An adaptable steady state Aspen Hysys model for the methane fuelled solid oxide fuel cell. Chem. Enginee. Res. Design. 92, 295–307. DOI: 10.1016/j.cherd.2013.07.025.
- 5. Galvagno, A., Prestipino, M., Zafarana, G. & Chiodo, V. (2016). Analysis of an integrated agro-waste gasification and 120 kw SOFC CHP system: modeling and experimental investigation. Energia Proc. 101, 528–535. DOI: 10.1016/j.egypro.2016.11.067.
- 6. Doherty, W., Reynolds, A. & Kennedy, D. (2010). Computer simulation of biomass gasification – Solid Oxide Fuel Cell power system using ASPEN Plus. Energy, 35, 4545–4555. DOI: 10.1016/j.energy.2010.04.051.
- 7. Song, T. W., Sohn, J. L., Kim, J. H., Kim, T. S., Ro, S. T., Suzuki, K. (2005). Performance analysis of a tubular solid Oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model. J. Power Sourc. 142, 30–42. DOI: 10.1016/j.jpowsour.2004.10.011.
- 8. Achenbach, E. (1994). Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack. J. Power Sour. 49, 333–348. DOI: 10.1016/0378-7753(93)01833-4.
- 9. Chan, S. H., Khor, K. A. & Xia, . (2001). A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sour. 93, 130–140. DOI: S0378-7753(00)00556-5.
- 10. Kupecki, J., Skrzypkiewicz, M., Wierzbicki, M. & Stepien, M. (2015). Analysis of a micro-CHP unit with in-series SOFC stack fed by biogas. Energia Proc. 75, 2021–2026. DOI: 10.1016/j.egypro.2015.07.265.
- 11. Barelli, L., Bidini, G., Gallorini, F. & Ottaviano, A. (2001). An energetic-exergetic comparison between PEMFC and SOFC based micro-CHP systems. Inter. J. Hydrogen Energy, 36, 2011, 3206–3214. DOI: 10.1016/j/ijhydene.2010.11.079.
- 12. Campanari, S. (2001). Thermodynamic model and parametric analysis of a tubular SOFC module. J. Power Sour. 92, 1–2, 26–34. DOI: S0378-7753(00)00494-8.
- 13. EG & G. Services, Parsons Inc., Science Applications International Corporation, Fuel Cell Handbook, National Technical Information Service, U. S. Department of Commerce: Springfield, V A, 2004.
- 14. Akkaya, V. A. (2007). Electrochemical model for performance analysis of a tubular SOFC. Int. J. Energy Res. 31, 1, 79–98, DOI: 10.1002/er.1238.
- 15. Timothy, A., Periasamy, V. & Moses, T. (2014). An adaptable steady state Aspen Hysys model for the methane fuelled solid oxide fuel cell. Chem. Enginee. Res. Des. 92, 295–307. DOI: 10.1016/j.cherd.2013.07.025.
- 16. Kakac, S., Pramuanjaroenkij, A. & Zhou, X. Y. (2007). A review of numerical modeling of solid Oxide fuel cells. Inter. J. Hydrogen Energy, 32, 761–786, 2007. DOI: 10.1016/j.ijhydene.2006.11.028.
- 17. Majewski, A. J. & Dhir, A. Silver as a current collector for SOFC, 12th European SOFC & SOE Forum, ISBN 978-3-905592-21-4, 5–8 July 2016, Lucerna, Switzerland.
- 18. Minutillo, M., Perna, A. & Jannelli, E.(2014). SOFC and MCFC system level modelling for hybrid plants performance prediction, Inter. J. Hydrogen Energy. 39, 21688–21699. DOI: 10.1016/j.ijhydeme.2014.09.082.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95713e53-c156-4463-ab4d-0ab23f5a01a0