PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aircraft piston engine load distribution in steady state operating conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of statistical analysis of aircraft piston engine operational parameters during normal operating conditions. Test was carried out on ultralight gyroplane Tercel produced by Aviation Artur Trendak equipped with CA 912 ULT piston engine. Research was conducted under normal operating conditions of the autogyro and data was collected from 15 independent tests including a total of 14 flight hours conducted during training flights. Engine and flight parameters were recorded at 9 Hz during each flight using on-board Flight Data Recorded system. The data collected was subjected to statistical analysis to determine the statistical distribution of parameters defining the engine's operating condition. The analysis covered engine speed, intake manifold pressure, oil temperature, head temperature and exhaust gas temperature. The results were presented in the form of histograms showing the characteristic ranges of the parameters in aviation engine operation. An analysis of the rate of change of the analysed parameters was then carried out. This was the basis for defining the engine's steady state. The results showed that the steady state of the engine under these operating conditions accounted for more than 78% of the total engine operating time. A Power Consumption Ratio indicating the load range of the engine was determined for steady states. It was shown that most of the time the motor operates at an average load of between 50% and 80% of the nominal value.
Czasopismo
Rocznik
Strony
29--35
Opis fizyczny
Bibliogr. 26 poz., fot. kolor., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, Poland
Bibliografia
  • [1] Andrych-Zalewska M, Chłopek Z, Merkisz J, Pielecha J. Evaluation of the test drive cycle conditions impact on exhaust emissions from an internal combustion engine. Combustion Engines. 2018;175(4):3-9. https://doi.org/10.19206/ce-2018-401
  • [2] Czarnigowski J, Wendeker M, Jaklinski P, Nazarewicz A, Piertykowski K, Geca M, et al. Model of injection system for SI radial aircraft engine. SAE Technical Papers 2007-01-1903. 2007. https://doi.org/10.4271/2007-01-1903
  • [3] Markowski J. Correction of the model for assessing the emission of harmful exhaust emissions from the engine of a small aircraft during the flight. Transp Res Proc. 2018;35: 230-239. https://doi.org/10.1016/j.trpro.2018.12.025
  • [4] Bakholdin D, Biryukov V, Tolstobrova L. Determining parameters of electric power unit for light aircraft. AER Adv Eng Res. Proceedings of the International Conference Actual Issues of Mechanical Engineering (AIME 2018). 2018; (157):65-69. https://doi.org/10.2991/aime-18.2018.13
  • [5] Jakliński P, Wendeker M, Czarnigowski J, Duk M, Zyska T, Klimkiewicz J. The comparison of the operating parameters in an aircraft radial piston engine fuelled by 100LL and ES95 gasoline. Combustion Engines. 2009;136(1):52-59. https://doi.org/10.19206/CE-117220
  • [6] Czarnigowski J, Jakliński P, Zyska T, Klimkiewicz J. Analysis of influence of legal requirements on the design of electronic ignition system for aviation piston engine. Journal of Kones. 2017;24(1):91-100. https://doi.org/10.5604/01.3001.0010.2801
  • [7] Kwon H, Park Y, Shin C, Kim J-H, Kim C-G. In-flight strain monitoring of aircraft tail boom structure using a fiber bragg grating sensor based health and usage monitoring system. Int J Aeronaut Space. 2021;22(3):567-577. https://doi.org/10.1007/s42405-020-00324-0
  • [8] Zhu L, Li N, Childs PRN. Light-weighting in aerospace component and system design (2018) Propul Power Research. 2018;7(2):103-119. https://doi.org/10.1016/j.jppr.2018.04.001
  • [9] Rohani SV, Jahangirian A. A fast and efficient method for multiobjective aerodynamic optimization of a civil aircraft fuselage. J Aerospace Eng. 2022;35(6). https://doi.org/10.1061/(ASCE)AS.1943-5525.0001494
  • [10] Sabater C, Stürmer P, Bekemeyer P. Fast predictions of aircraft aerodynamics using deep-learning techniques. AIAA J. 2022;60(9):5249-5261. https://doi.org/10.2514/1.J061234
  • [11] Song C, Liu H, Zhou Z, Luo X, Li W. Inverse design of aerodynamic configuration using generative topographic mapping. Xibei Gongye Daxue Xuebao/Journal of North-western Polytechnical University. 2022;40(4):837-844. https://doi.org/10.1051/jnwpu/20224040837
  • [12] Shen Y-G, Nie K, Xu J-S, Chen G-S. Combustion and emission characteristics of compression-ignition aero piston engine at different altitudes. Tuijin Jishu/Journal of Propulsion Technology. 2022;43(4). https://doi.org/10.13675/j.cnki.tjjs.200896
  • [13] Zhao Z, Cui H. Numerical investigation on combustion processes of an aircraft piston engine fueled with aviation kerosene and gasoline. Energy. 2022;239:122264. https://doi.org/10.1016/j.energy.2021.122264
  • [14] Grabowski Ł, Karpiński P, Rudzik D. Study on operating load of the compression ignition engine. Combustion Engines. 2017;168(1):168-171. https://doi.org/10.19206/CE-2017-127
  • [15] Heywood JB. Internal Combustion Engine Fundamentals. McGraw Hill, New York, 1988.
  • [16] Bai M, Yang W, Song D, Kosuda M, Szabo S, Lipovsky P, Kasaei A. Research on energy management of hybrid unmanned aerial vehicles to improve energy-saving and emission reduction performance. Int J Env Res Pub He. 2020;17:2917. https://doi.org/10.3390/ijerph17082917
  • [17] Yuhimenko V, Baimel D. Sitbon M, Averbukh M, Lineykin S, Kuperman A. Hybrid internal combustion engine based auxiliary power unit. Micromachines. 2020;11:438. https://doi.org/10.3390/mi11040438
  • [18] Zhao X, Guerrero JM, Wu X. Review of aircraft electric power systems and architectures. Energycon 2014 - IEEE Int. Energy Conf. 2014:949-953. https://doi.org/10.1109/ENERGYCON.2014.6850540
  • [19] Song J, Cha J. Analysis of driving dynamics considering driving resistances in on-road driving. Energies. 2021;14: 3408. https://doi.org/10.3390/en14123408
  • [20] Bieniek A, Brol S, Mamala J. The system for estimation parameters of internal combustion engine in the road test. Journal of Kones. 2011;18(2):279-286.
  • [21] Sureshkumar J, Venkitachalam G, Mallikarjuna JM, Elayaraja R. Study on effect of engine operating parameters on flame characteristics. SAE Technical Papers 2015-01-0749. 2015. https://doi.org/10.4271/2015-01-0749
  • [22] Gao Y, Checkel MD. Emission factors analysis for multiple vehicles using an on-board, in-use emissions measurement system. SAE Technical Papers 2007-01-1327, 2007(724), 776-790. https://doi.org/10.4271/2007-01-1327
  • [23] Bera P. Torque characteristic of SI engine in dynamic operating states. Combustion Engines. 2017;171(4):175-180. https://doi.org/10.19206/CE-2017-429
  • [24] Wendeker M, Jakliński P, Czarnigowski J. Experimental analysis of automotive engine conditions of operation. Eksploat Niezawodn. 2000;6:19-28.
  • [25] Aviation Artur Trendak TERCEL Carbon RSTi aircraft maintenance manual TERCEL-C-AMM-001-EN, edition 1. 28 Oct 2020.
  • [26] Boriboonsomsin K, Durbin T, Scora G, Johnson K, Sandez D, Vu A, et al. Real-world exhaust temperature and engine load distributions of on-road heavy-duty diesel vehicles in various vocations. Data Brief. 2018;18:1520-1543. https://doi.org/10.1016/j.dib.2018.04.044
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-956e8003-0aa3-468a-a81e-4a7c0e1f535c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.