PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Alternative technology towards clean and sustainable industry: Conversion of carbon dioxide gas into potassium carbonate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increase in CO2 gas emissions by more than 50% between 2000 and 2023 from industrial processes has triggered an increase in greenhouse gases and global warming. Effective, efficient, and economical CO2 capture that can be integrated with existing processes to maintain environmental stability is greatly needed. The integration of influential factors in the absorption and diffusion-reaction processes must be well-combined to achieve the desired operating conditions. The research aims to analyze the occurring phenomena and determine the amount of K2CO3 product generated from the CO2 capture process by integrating influential factors, namely KOH concentration, reaction temperature, and stirring speed. Observations were conducted at 9800 Pa pressure, KOH solution concentration of 6-8 M, stirring speed of 200-300 rpm, reaction temperature of 30-50°C, CO2 flow rate of 2 dm3/minute, and reaction time of 150 minutes. The CO2 capture results were analyzed using gravimetric and instrumentation methods to evaluate the products. Observation results showed that the best conditions were obtained at 8 M KOH concentration, 300 rpm stirring speed, and 50°C reaction temperature, with KOH conversion reaching 53.43% and K2CO3 product of 54.94 grams. These results indicate that integrating influential factors in the absorption and diffusion-reaction processes positively impacts CO2 capture. However, the process is not optimal, as the KOH conversion is still far below 100%. Therefore, further research must be conducted by combining the previously studied influential factors such as reaction time, CO2 gas flow rate, and CO2 gas distributor holes to maximize KOH conversion and K2CO3 product yield.
Twórcy
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jendral Sudirman KM. 3, Cilegon, Banten, 42435, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jendral Sudirman KM. 3, Cilegon, Banten, 42435, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jendral Sudirman KM. 3, Cilegon, Banten, 42435, Indonesia
  • School of Envinronment, Faculty of Arts and Science, University of Toronto, 33 Willcocks Street, Suite 1016V, Toronto, ON, M5S 3E8, Canada
Bibliografia
  • 1. Bunsen, F., Nissen, C., Hauck, J. The impact of recent climate change on the global ocean carbon sink. Geophysical Research Letters. 2024; 51(4): e2023GL107030. https://doi.org/10.1029/2023GL107030.
  • 2. Bashir, A., Ali, M., Patil, S., Aljawad, M. S., Mahmoud, M., Al-Shehri, D., Kamal, M. S. Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth-Science Reviews. 2024; 104672. https://doi.org/10.1016/j.earscirev.2023.104672.
  • 3. Galán, A. S. The intricate relationship between the human brain and anthropogenic global warming: impact of global warming on mental health. In Health and Climate Change, Academic Press. 2025; 51–71. https://doi.org/10.1016/B978-0-443-29240-8.00005-5.
  • 4. Prajapati, M., Thesia, D., Thesia, V., Rakholia, R., Tailor, J., Patel, A., Shah, M. Carbon capture, utilization, and storage (CCUS): a critical review towards carbon neutrality in India. Case Studies in Chemical and Environmental Engineering. 2024; 100770. https://doi.org/10.1016/j.cscee.2024.100770.
  • 5. Ritchie, H., & Roser, M. CO₂ emissions dataset: Our sources and methods. Our World in Data, 2024.
  • 6. Kakitani, K., Sugiono, W., Nakano, Y., Sato, K., Shimizu, Y. Effect of KOH and dissolved hydrogen on oxide film and stress corrosion cracking susceptibility of Alloy X-750. Mechanical Engineering Journal. 2024; 11(2): 23–00317. https://doi.org/10.1299/mej.23-00317.
  • 7. Sivaramakrishnan, R., Suresh, S., Incharoensakdi, A. Development of Chlamydomonas sp. biorefinery for sustainable methyl ester and malic acid production. Fuel. 2024; 371, 132017. https://doi.org/10.1016/j.fuel.2024.132017.
  • 8. Picard, K., Picard, C., Mager, D. R., Richard, C. Potassium content of the American food supply and implications for the management of hyperkalemia in dialysis: an analysis of the Branded Product Database. In Seminars in Dialysis. 2024; 37(4): 307–316. https://doi.org/10.1111/sdi.13007.
  • 9. Shojaee Barjoee, S., & Rodionov Alekseevich, V. Respirable Dust in Ceramic Industries (Iran) and its Health Risk Assessment using Deterministic and Probabilistic Approaches. Pollution. 2024; 10(4), 1206–1226. https://doi.org/10.22059/poll.2024.376043.2360.
  • 10. Mourad, A. A., Mohammad, A. F., Al-Marzouqi, A. H. Evaluation of bovine carbonic anhydrase for promoting CO2 capture via reaction with KOH and high-salinity reject brine. Journal of CO2 Utilization. 2024; 81, 102714. https://doi.org/10.1016/j.jcou.2024.102714.
  • 11. Rivera, R. M., Binnemans, K. Carbon dioxide as a sustainable reagent in circular hydrometallurgy. ChemSusChem. 2024; e202400931. https://doi.org/10.1002/cssc.202400931.
  • 12. Saeidi, M., Ghaemi, A., Tahvildari, K. CO2 capture exploration on potassium hydroxide employing response surface methodology, isotherm and kinetic models. Iranian Journal of Chemistry and Chemical Engineering (IJCCE). 2020; 39(5), 255–267.
  • 13. Smith, J. M., Van Ness, H. C., Abbott, M. M., Swihart, M. T. Introduction to chemical engineering thermodynamics. 8th edition. Singapore: McGraw-Hill. 2018.
  • 14. Yao, C., Dong, Z., Zhao, Y., Chen, G. Gas-liquid flow and mass transfer in a microchannel under elevated pressures. Chemical Engineering Science. 2015; 123, 137–145. https://doi.org/10.1016/j.ces.2014.11.005.
  • 15. Singh, J., Bhunia, H., Basu, S. Adsorption of CO2 on KOH activated carbon adsorbents: Effect of different mass ratios. Journal of Environmental Management. 2019; 250, 109457. https://doi.org/10.1016/j.jenvman.2019.109457.
  • 16. Firman, N. F. A., Noor, A., Zakir, M., Maming, M., Fathurrahman, A. F. Absorption of carbon dioxide into potassium hydroxide: Preliminary study for its application into liquid scintillation counting procedure. Egyptian Journal of Chemistry. 2021; 64(9): 4907–4912. https://dx.doi.org/10.21608/ejchem.2021.66304.3506.
  • 17. Mourad, A. A., Mohammad, A. F., Al-Marzouqi, A. H., Altarawneh, M., Al-Marzouqi, M. H., El-Naas, M. H. Carbon dioxide capture through reaction with potassium hydroxide and reject brine: A kinetics study. International Journal of Greenhouse Gas Control. 2022; 120, 103768. https://doi.org/10.1016/j.ijggc.2022.103768.
  • 18. Rastegar, Z., Ghaemi, A. CO2 absorption into potassium hydroxide aqueous solution: experimental and modeling. Heat and Mass Transfer. 2022; 58(3), 365–381. https://doi.org/10.1007/s00231-021-03115-9.
  • 19. Li, D., Yan, B., Gao, T., Li, G., Wang, Y. PINN Model of Diffusion Coefficient Identification Problem in Fick’s Laws. ACS Omega. 2024; 9(3), 3846–3857. https://doi.org/10.1021/acsomega.3c07924.
  • 20. Zhu, H., Lei, Y., Yu, P., Li, C., Yao, B., Yang, S., Peng, H. Novel high-precision wax molecular diffusion coefficient correlation based on the diffusion laboratory apparatus coupled with differential scanning calorimeter. Fuel. 2024; 355, 129452. https://doi.org/10.1016/j.fuel.2023.129452.
  • 21. Jabalquinto, A. R., Mai, N., Belghiche, S., Gill, P. P. Modified Arrhenius kinetics for double base propellant decomposition: effect of water. Polymer Degradation and Stability. 2024; 110846. https://doi.org/10.1016/j.polymdegradstab.2024.110846.
  • 22. Brettfeld, E. G., Popa, D. G., Dobre, T., Moga, C. I., Constantinescu-Aruxandei, D., Oancea, F. CO2 Capture Using Deep Eutectic Solvents Integrated with Microalgal Fixation. Clean Technologies. 2023; 6(1): 32-48. https://doi.org/10.3390/cleantechnol6010003.
  • 23. Nuryoto N., Heriyanto H., Rahmawati L., Herliza J. Greenhouse Gas Transformation: Converting CO₂ into High-Value Material as Precipitated Calcium Carbonate (PCC) (original title: Transformasi Gas Rumah Kaca: Mengubah CO2 Menjadi Bahan Bernilai Tinggi Berupa Precipitated Calcium Carbonate (PCC)). Jurnal Sains & Teknologi. 2024; 13(2). https://doi.org/10.23887/jstundiksha.v13i2.79553.
  • 24. Moreno, V. C., Ledoux, A., Estel, L., Derrouiche, S., Denieul, M. P. Valorisation of CO2 with epoxides: Influence of gas/liquid mass transfer on reaction kinetics. Chemical Engineering Science. 2017; 170, 77–90. https://doi.org/10.1016/j.ces.2017.01.050.
  • 25. Kierzkowska-Pawlak, H. Determination of kinetics in gas-liquid reaction systems. An overview. Ecological Chemistry and Engineering S. 2012; 19(2), 175–196. https://doi.org/10.2478/v10216-011-0014-y.
  • 26. Wanten, B., Gorbanev, Y., Bogaerts, A. Plasma-based conversion of CO2 and CH4 into syngas: A dive into the effect of adding water. Fuel. 2024; 374, 132355. https://doi.org/10.1016/j.fuel.2024.132355.
  • 27. Adu, E., Zhang, Y. D., Liu, D., Tontiwachwuthikul, P. Parametric process design and economic analysis of post-combustion CO2 capture and compression for coal- and natural gas-fired power plants. Energies. 2020; 13(10), 2519. https://doi.org/10.3390/en13102519.
  • 28. Abdullah, N. T., Shakir, I. K. Efficient carbon dioxide capture in packed columns by solvents blend promoted by chemical additives. Journal of Ecological Engineering. 2024; 25(10). https://doi.org/10.12911/22998993/191436.
  • 29. Atmani, F., Kaci, M. M., Yeddou-Mezenner, N., Soukeur, A., Akkari, I., Navio, J. A. Insights into the physicochemical properties of Sugar Scum as a sustainable biosorbent derived from sugar refinery waste for efficient cationic dye removal. Biomass Conversion and Biorefinery. 2024; 14(4), 4843–4857. https://doi.org/10.1007/s13399-022-02646-3.
  • 30. Kosolapova, S. M., Smal, M. S., Pyagay, I. N., Rudko, V. A. The Physicochemical basis for the production of rapeseed oil fatty acid esters in a plug flow reactor. Processes. 2024; 12(4), 788. https://doi.org/10.3390/pr12040788.
  • 31. Zhao, B., Li, H., Liu, Q., Su, Y. Modeling and simulation of gas vortex flow dynamics to understand the nature of mass transfer enhancement. Physics of Fluids. 2023; 35(6). https://doi.org/10.1063/5.0156468.
  • 32. Shi, S., Wu, X., Han, G., Zhong, Z. Study on the gas–liquid annular vortex flow for liquid unloading of gas well. Oil & Gas Science and Technology–Revue d’IFP Energies Nouvelles. 2019; 74, 82. https://doi.org/10.2516/ogst/2019052.
  • 33. Ouyang, Y., Manzano, M. N., Beirnaert, K., Heynderyckx, G. J., & Van Geem, K. M. Micromixing in a gas–liquid vortex reactor. AIChE Journal. 2021; 67(7): e17264. https://doi.org/10.1002/aic.17264.
  • 34. Omranpour, S., Larimi, A. Modeling and simulation of biodiesel synthesis in fixed bed and packed bed membrane reactors using heterogeneous catalyst: a comparative study. Journal of Cleaner Production. 2024; 376, 134047. https://doi.org/10.1016/j.jclepro.2023.134047.
  • 35. Xue, J., Shi, Y., Zhang, L., & Liu, Y. Photocatalytic CO2 reduction to methanol using a TiO2–Ag3PO4–MnO2 composite catalyst. Journal of Materials Chemistry A. 2024; 12(8), 4593–4601. https://doi.org/10.1039/d3ta11839b.
  • 36. Rodriguez, R., Alcántara, R., Hermoso, J. T., Sánchez, M., Sastre, H., Fernández, A. J. Tuning the CO2 to CO conversion reaction in Pd and Au supported on CeO2: Comparative study and applications for fuel cell technology. Applied Catalysis B: Environmental. 2023; 307, 121149. https://doi.org/10.1016/j.apcatb.2022.121149.
  • 37. Yuli, S. D., Moussavi, G., Sun, X., & Tran, H. Process Intensification for Carbon Dioxide Capture by Absorption and Cryogenic Separation: A Review. Industrial & Engineering Chemistry Research. 2024; 63(3), 1239–1254. https://doi.org/10.1021/acs.iecr.3c06247.
  • 38. Wang, Z., Christodoulou, C., Mazzei, L. Analytical study on the liquid-particle mass transfer coefficient for multiparticle systems. Chemical Engineering Journal. 2024; 152733. https://doi.org/10.1016/j.cej.2024.152733.
  • 39. Maluta, F., Alberini, F., Paglianti, A., Montante, G. A CFD study on the change of scale of non-Newtonian stirred digesters at low Reynolds numbers. Chemical Engineering Research and Design. 2024; 205, 498–509. https://doi.org/10.1016/j.cherd.2024.04.018.
  • 40. Chen, T. Y., Ho, W. W. Effects of pressure and temperature on CO2 facilitation of amino acid salt-containing membranes for post-combustion carbon capture. Journal of Membrane Science. 2024; 689, 122166. https://doi.org/10.1016/j.memsci.2023.122166.
  • 41. Institute of Chemistry University of Tartu. Data Base of ATR-FTIR Spectra of various materials-Potassium Carbonate. Potassium Carbonate – Database of ATR-FT-IR spectra of various materials, 2024 (accessed on 28 December 2024).
  • 42. Skoog, D., Holler, T., Nieman, F. Principles of Instrumental Analysis. 5th edition. Philadelphia: Saunders College Pub.; Orlando, Fla.: Harcourt Brace College Publishers. 1998.
  • 43. Stuart, B. Infrared Spectroscopy Fundamental and Applications. John Wiley & Sons Ltd. New York. 2004.
  • 44. Lin, J., Zhao, Q., & Huang, H. Performance Analysis of Vermiculite–Potassium Carbonate Composite Materials for Efficient Thermochemical Energy Storage. Energies. 2024; 7(12): 2847. https://doi.org/10.3390/en17122847.
  • 45. Masoud, N., Clement, V., van Haasterecht, T., Führer, M., Hofmann, J. P., Bitter, J. H. Shedding Light on Solid Sorbents: Evaluation of Supported Potassium Carbonate Particle Size and Its Effect on CO2 Capture from Air. Industrial & Engineering Chemistry Research. 2022; 61(38), 14211–14221. https://doi.org/10.1021/acs.iecr.2c01508.
  • 46. Liu, G. H., Deng, L. T., Wen, M. M., Cui, H. N., Huang, J. Y., Wang, C. F., Chen, T. R. Determination of concentration of free carbon dioxide in artificial seawater by difference balance system/Henry’s law. Sustainability. 2023; 15(6), 5096. https://doi.org/10.3390/su15065096.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-956818c4-b3ad-47b4-a868-ee4cd4db7bc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.