PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of multi-objective fruit fly optimisation algorithm based on population Manhattan distance in distribution network reconfiguration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to optimise the operation state of the distribution network in the presence of distributed generation (DG), to reduce network loss, balance load and improve power quality in the distribution system, a multi-objective fruit fly optimisation algorithm based on population Manhattan distance (pmdMOFOA) is presented. Firstly, the global and local exploration abilities of a fruit fly optimisation algorithm (FOA) are balanced by combining population Manhattan distance (PMD) and the dynamic step adjustment strategy to solve the problems of its weak local exploration ability and proneness to premature convergence. At the same time, Chebyshev chaotic mapping is introduced during position update of the fruit fly population to improve ability of fruit flies to escape the local optimum and avoid premature convergence. In addition, the external archive selection strategy is introduced to select the best individual in history to save in external archives according to the dominant relationship amongst individuals. The leader selection strategy, external archive update and maintenance strategy are proposed to generate a Pareto optimal solution set iteratively. Lastly, an optimal reconstruction scheme is determined by the fuzzy decision method. Compared with the standard FOA, the average convergence algebra of a pmdMOFOA is reduced by 44.58%. The distribution performance of non-dominated solutions of a pmdMOFOA, MOFOA, NSGA-III and MOPSO on the Pareto front is tested, and the results show that the pmdMOFOA has better diversity. Through the simulation and analysis of a typical IEEE 33-bus system with DG, load balance and voltage offset after reconfiguration are increased by 23.77% and 40.58%, respectively, and network loss is reduced by 57.22%, which verifies the effectiveness and efficiency of the proposed method.
Rocznik
Strony
307--323
Opis fizyczny
Bibliogr. 25 poz., rys., wz., tab.
Twórcy
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University Lanzhou, China
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University Lanzhou, China
  • College of Electrical and Information Engineering, Lanzhou University of Technology Lanzhou, China
  • CRRC Qingdao Sifang Co., Ltd. Qingdao, China
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University Lanzhou, China
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University Lanzhou, China
Bibliografia
  • [1] Merlin A., Back H., Search for a minimal-loss operating spanning tree configuration in an urban power distribution system, Fifth Power Systems Computer Conference (PSCC), Cambridge, Britain, pp. 1–18 (1975).
  • [2] Kashem M. A., Ganapathy V., Jasmon G. B., Network reconfiguration for load balancing in distribution networks, IEE Proceedings-Generation Transmission and Distribution, vol. 146, no. 6, pp. 563–567 (1999).
  • [3] Liu Y. K., Li J., Wu L., Coordinated Optimal Network Reconfiguration and Voltage Regulator/DER Control for Unbalanced Distribution Systems, IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2912–2922 (2019).
  • [4] Ahmadi S., Vahidinasab V., Ghazizadeh M. et al., Co-optimising distribution network adequacy and security by simultaneous utilisation of network reconfiguration and distributed energy resources, IET Generation Transmission & Distribution, vol. 13, no. 20, pp. 4747–4755 (2019).
  • [5] Liu H.Q., Qu J. M., Shanshan Yang S.S. et al., Intelligent optimal dispatching of active distribution network using modified flower pollination algorithm, Archives of Electrical Engineering, vol. 69, no. 1, pp. 159–174 (2020).
  • [6] Rahman Y. A., Manjang S., Yusran et al., Distributed generation’s integration planning involving growth load models by means of genetic algorithm, Archives of Electrical Engineering, vol. 67, no. 3, pp. 667–682 (2018).
  • [7] Olamaei J., Niknam T., Gharehpetian G., Application of particle swarm optimisation for distribution feeder reconfiguration considering distributed generators, Applied Mathematics and Computation, vol. 201, no. 1, pp. 575–586 (2008).
  • [8] Tang H. L., Wu J., Multi-objective coordination optimisation method for DGs and EVs in distribution networks, Archives of Electrical Engineering, vol. 68, no. 1, pp. 15–32 (2019).
  • [9] Rao R. S., Ravindra K., Satish K. et al, Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation, IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 317–325 (2013).
  • [10] Ling F. H., Zhang J. H., Sun X. B. et al., The application based on improved FOA optimisation algorithm in distribution network reconfiguration, Electric Switchgear, vol. 57, no. 1, pp. 91–95 (2019).
  • [11] Singh D., Misra R.K., Multi-objective feeder reconfiguration in different tariff structures, IET Generation Transmission & Distribution, vol. 4, no. 8, pp. 974–988 (2010).
  • [12] Sun K.M., Chen Q., Zhao P., Genetic algorithm with mesh check for distribution network topology reconfiguration, Automation of Electric Power Systems, vol. 42, no. 11, pp. 64–71 (2018).
  • [13] Ganesh S., Kanimozhi R., Meta-heuristic technique for network reconfiguration in distribution system with photovoltaic and D-STATCOM, IET Generation, Transmission & Distribution, vol. 12, no. 20, pp. 4524–4535 (2018).
  • [14] Chen D.Y., Zhang X.X., Distribution network reconfiguration of distributed generation based on AMOPSO algorithm, Acta Energiae Solaris Sinica, vol. 38, no. 8, pp. 2195–2203 (2017).
  • [15] Li Z.K., Lu Q., Fu Y. et al., State split multi-objective dynamic programming algorithm for dynamic reconfiguration of active distribution network, Proceedings of the CSEE, vol. 39, no. 17, pp. 5025􀀀5036 (2019).
  • [16] Ding Y., Wang F., Bin F. et al., Multi-objective distribution network reconfiguration based on game theory, Electric power automation equipment, vol. 39, no. 2, pp. 28–35 (2019).
  • [17] Li H. J., Zhang P. W., Guo H. D., Adaptive multi-objective particle swarm optimisation algorithm based on population Manhattan distance, Computer Integrated Manufacturing Systems, vol. 26, no. 4, pp. 1019–1032 (2020).
  • [18] Liao J. Q., Wang H., Wang X. P., Fruit fly optimisation algorithm with chaotic dynamical step factor, Transducer and Microsystem Technologies, vol. 38, no. 8, pp. 139–142 (2019).
  • [19] Marko M., Najdan V., Milica P. et al., Chaotic fruit fly optimisation algorithm, Knowledge-based systems, vol. 89, no. 11, pp. 446–458 (2015).
  • [20] Saffar A., Hooshmand R., Khodabakhshian A., A new fuzzy optimal reconfiguration of distribution systems for loss reduction and load balancing using ant colony search-based algorithm, Applied Soft Computing, vol. 11, no. 5, pp. 4021–4028 (2011).
  • [21] ZhaoY.L., Lu J.X.,Yan Q. et al., Research on 3D-U intelligent manufacturing cell facilities layout based on self-adapting multi-objective fruit fly optimisation algorithm, Computer Integrated Manufacturing Systems, vol. 8, no. 1, pp. 1–21 (2020).
  • [22] Deb K., Pratap A., Agarwal S. et al., A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197 (2002).
  • [23] Coello C.A.C., Pulido G.T., Lechuga M.S., Handling multiple objective with particle swarm optimisation, IEEE Transactions Evolutionary Computation, vol. 8, no. 3, pp. 256–279 (2004).
  • [24] Zitzler E., Deb K., Thiele L., Comparison of multi-objective evolutionary algorithms: empirical study, Evolutionary Computation, vol. 8, no. 8, pp. 173–195 (2000).
  • [25] Baran M.E., Wu F.F., Network reconfiguration in distribution systems for loss reduction and load balancing, IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1401–1407 (1989).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95664ed7-125c-4a2c-bedf-c312ddd641f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.