PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Nitrogen and Phosphorus from Domestic Wastewater by Electrocoagulation: Application of Multilevel Factorial Design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of this investigation was to evaluate the efficiency of electrocoagulation in eliminating nitrogen and phosphorous from domestic wastewater and to determine the main operating parameters affecting the process. Accordingly, an acrylic reactor and aluminum (cathode) and iron (anode) electrodes were used. The tests were performed based on a multilevel factorial experimental design, considering current intensity, treatment time, and pH as factors. The design response variables were the percentage of nitrogen and phosphorous removal. In the case of phosphorus, the removal rates of up to 99% were reached after 40 minutes of treatment with current intensities of 3 amps and at a modified pH of 6. The nitrogen removal was up to 27% with a treatment time of 40 minutes, 3 amps, and a pH of 6. A statistical analysis revealed that pH did not have a significant effect on the nitrogen removal process, whereas in the phosphorus removal, the three factors influenced the process at a confidence level of 0.05. The results indicate that the electrocoagulation process in this type of water is very efficient in the removal of phosphorus, whereas for nitrogen, the efficiency decreases noticeably. However, electrocoagulation has an advantage over other conventional treatment technologies, because it does not require additional treatment units to remove phosphorus.
Rocznik
Strony
124--133
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Instituto de Investigación Científica (IDIC), Universidad de Lima, Avenida Javier Prado Este No. 4600, 33, Lima, Peru
Bibliografia
  • 1. Attour A., Touati M., Tlili M., Ben Amor M., Lapicque F., Leclerc J-P. 2014. Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Separation and Purification Technology, 123, 124–129. DOI: 10.1016/j.seppur.2013.12.030.
  • 2. Bouamra F., Drouiche N., Ahmed D.S., Lounic H. 2012. Treatment of water loaded with orthophosphate by electrocoagulation. Procedia Engineering, 33, 155–162.DOI:10.1016/j.proeng.2012.01.1188.
  • 3. Can O.T. 2014. COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton process. Desalination and Water Treatment, 52(1–3), 65–73. DOI:10.1080/19443994.2013.781545.
  • 4. Chen G. 2004. Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38, 11–41. DOI: http://dx.doi.org/10.1016/j.seppur.2003.10.006
  • 5. Elnenay A., Nassef E., Malash G., Magrid M. 2016. Treatment of drilling fluids wastewater by electrocoagulation. Egyptian Journal of Petroleum, 26, 203–208. DOI:10.1016/j.ejpe.2016.03.005.
  • 6. Emamjomeh M.M., Sivakumar M. 2019. Denitrification using a monopolar electrocoagulation/flotation (ECF) process. Journal of Environmental Management, 91, 516–522. DOI: 10.1016/j.jenvman.2009.09.020.
  • 7. Inan H., Alaydin E. 2014. Phosphate and nitrogen removal by iron produced in electrocoagulation reactor. Desalination and Water Treatment, 52(7–9), 1396–1403, DOI: 10.1080/19443994.2013.787950.
  • 8. Khandegar V., Saroha A. 2013. Electrocoagulation for the treatment of textile industry effluent–A review. Journal of Environmental Management, 128, 949–963. DOI: 10.1016/j.jenvman.2013.06.043.
  • 9. Kobya M., Hiz H., Senturk E., Aydiner C., Demirbas E. 2006. Treatment of potato chips manufacturing wastewater by electrocoagulation. Desalination, 190(1–3), 201–211.DOI:10.1016/j.desal.2005.10.006.
  • 10. Koukkanen V., Koukkanen T., Ramo U., Lassia U., Roininen J. 2015. Removal of phosphate from wastewaters for further utilization using electro-coagulation with hybrid electrodes-Techno-economic studies. Journal of Water Process Engineering, 8, 50–57. DOI:10.1016/j.jwpe.2014.11.008.
  • 11. Li X., Song J., Guo J., Wang Z., Feng Q. 2011. Landfill leachate treatment using electrocoagulation. Procedia Environmental Sciences, 10, 1159–1164. DOI:10.1016/j.proenv.2011.09.185.
  • 12. Mouedhen G., Feki M., Wery M., Ayedi H.F. 2008. Behavior of aluminum electrodes in electrocoagulation process. Journal of Hazardous Materials, 150(1), 124–135. DOI:10.1016/j.jhazmat.2007.04.090.
  • 13. Muñoz-Paredes J.F., Ramos-Ramos M. 2014. Reactores discontinuos secuenciales: Una tecnología versátil en el tratamiento de aguas residuales. Ciencia e Ingeniería Neogranadina, 24 (1), 49–66. DOI:10.18359/rcin.7
  • 14. Nassef E. 2012. Removal of phosphorous compounds by electrochemical technique. Engineering Science and Technology: An International Journal, 2(3), 403–407. Recuperado de http://www.estij.org/papers/vol2no32012/7vol2no3.pdf
  • 15. Orssatto F., Tavares M.H.F., Silva F.M., Eyng E., Fleck L. 2018. Optimization of nitrogen and phosphorus removal from pig slaughterhouse and packing plant wastewater through electrocoagulation in a batch reactor. Ambiente & Água, 13(5), 1–10. DOI: http://dx.doi.org/10.4136/ambi-agua.2233.
  • 16. Omwene P.I., Kobya M. 2018. Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study DOI: 10.1016/j.psep.2018.01.005.
  • 17. Omwene P.I., Kobya M., Can O.T.2018. Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes. Ecological Engineering,123, 65–73. https://doi.org/10.1016/j.ecoleng.2018.08.025.
  • 18. Piña M., Martín A., Gonzáles C., Prieto F., Guevara A., García J. 2011. Revisión de variables de diseño y condiciones de operación en la electrocoagulación. Revista Mexicana de Ingeniería Química, 10(2), 257–271. Access: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665–27382011000200010
  • 19. Rahimi Y., Torabian A., Mehrdadi N., Shamoradi B. 2011. Simultaneous nitrification–dentrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). Journal of Hazardous Materials, 185(2–3), 852–857. DOI: 10.1016/j.jhazmat.2010.09.098.
  • 20. Ryan Devlin T., Kowalski M.S., Pagaduan E., Zhang X., Wei V., Oleszkiewicz J.A. 2018. Electrocoagulation of raw wastewater using aluminum, iron, and magnesium electrodes. Journal of Hazardous Materials (2018). https://doi.org/10.1016/j.jhazmat.2018.10.017.
  • 21. Taufer G., Müller C. S., Hilgemann M. 2016. Phosphorus and nitrogen removal in the dairy industry effluent by electrocoagulation. Scientia Plena, 12(9), 1–6. DOI: 10.14808/sci.plena.2016.097202.
  • 22. Thapa A., Rahman S., Borhan M. 2015. Remediation of feedlot nutrients runoff by electrocoagulation process. American Journal of Environmental Sciences, 11(5), 366–379. DOI: 10.3844/ajessp.2015.366.379.
  • 23. Tian Y., He W., Liang D., Yang W., Logan B.E., Ren N. 2018. Effective phosphate removal for advanced water treatment using low energy, migration electric–field assisted electrocoagulation. Water Research, 138, 129–136. DOI: 10.1016/j.watres.2018.03.037.
  • 24. Yehya T., Chafi M., Balla W., Vial C., Esadki A., Gourich B. 2014. Experimental analysis and modeling of denitrification using electrocoagulation process. Separation and Purification Technology, 132, 644–654. DOI: 10.1016/j.seppur.2014.05.022.
  • 25. Zhang X., Lin H., Hu B. 2016. Phosphorus removal and recovry from dairy manureby electrocoagulation. RSC Advances, 6, 57960–57968. DOI: 10.1039/C6RA06568F.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9565c64f-3fb8-4982-a44f-4b7d5049d96a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.