PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristic of small-strain stiffness of fine-grained soils based on advanced laboratory tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Charakterystyka sztywności gruntów drobnoziarnistych na podstawie zaawansowanych metod badań laboratoryjnych
Języki publikacji
EN
Abstrakty
EN
The non-linearity of the modulus in the zone of small deformations has become one of the three basic concepts of modern soil mechanics, together with “effective stresses” or “critical state”. It is therefore necessary to obtain suitable parameters to describe these phenomena through the development of modern measuring equipment and new research methods. Limitations in the availability of the research area or research equipment indicate the need to create a data set, in the formula of regional assessments. The article presents a compilation of data on the deformation characteristics of soils covering about 75% of the country’s area, which are the most common subsoils for building. Descriptions, images of microstructures, and a record of mechanical parameters are presented for various age-old glacial clays and marginal clays and loesses. Emphasis is placed on parameters obtained from triaxial tests, including the determination of the shear modulus at small deformations obtained from BET measurements. In combination with the patented solution of sample strain measurement, complete deformability curves of the tested samples were obtained, indicating model reference curves developed for the above soil types. The statistically significant amount of data collected allowed the creation of a specific portfolio for selected soils as a starting point for assessing deformability. This corresponds to the current expectations regarding the characteristics of the behaviour of the substrate in the full spectrum of stresses and deformations, obtained from different types of tests, which, as in the case of soil stiffness degradation, together allow the correct determination of the necessary parameters.
PL
Nieliniowość modułu w strefie małych odkształceń stała się jednym z trzech podstawowych pojęć we współczesnej mechanice gruntów, podobnie jak „naprężenia efektywne” czy „stan krytyczny”. Tym samym konieczne jest pozyskiwanie odpowiednich parametrów do opisu tych zjawisk poprzez rozwój nowoczesnej aparatury pomiarowej i nowych metod badawczych. Ograniczenia w dostępności terenu badań czy aparatury badawczej wskazują na potrzebę tworzenia zbioru danych, w formule zestawień o charakterze regionalnym. W artykule przedstawiono kompilację danych w zakresie charakterystyki odkształceniowej dla gruntów zajmujących ok. 75% powierzchni kraju, stanowiących najczęstsze podłoże obiektów budowlanych. Przedstawiono opisy, obrazy mikrostruktur oraz zapis parametrów mechanicznych dla różnowiekowych glin polodowcowych i iłów zastoiskowych oraz lessów. Główny nacisk został położony na parametry uzyskane z badań „trójosiowych”, w tym oznaczenia modułu ścinania przy małych odkształceniach uzyskane z pomiarów sejsmicznych metodą BET. W połączeniu z opatentowanym rozwiązaniem napróbkowego pomiaru odkształceń uzyskano pełne przebiegi odkształcalności badanych próbek wskazując modelowe krzywe referencyjne opracowane dla ww. typów gruntów. Istotna statystycznie ilość zebranych danych pozwoliła na stworzenie swoistego portfolio dla wybranych gruntów, jako punkt wyjścia do oceny zdolności deformacyjnych. Spełnia to obecne oczekiwania odnośnie charakterystyk zachowania podłoża w pełnym spektrum naprężeń i odkształceń, uzyskiwanych z różnego typu badań, które tak jak w przypadku degradacji sztywności gruntu zebrane razem pozwalają na poprawne wyznaczenie niezbędnych parametrów.
Twórcy
  • Department of Building Structures, Geotechnics and Concrete, Building Research Institute, Warsaw, Poland
  • Building Research Institute, Warsaw, Poland
  • Department of Construction Materials Engineering and Geoengineering, Lublin University of Technology, Lublin, Poland
  • Department of Building Structures, Geotechnics and Concrete, Building Research Institute, Warsaw, Poland
Bibliografia
  • [1] P.K. Robertson, “Interpretation of cone penetration tests - unified approach”, Canadian Geotechnical Journal, vol. 46, no. 11, pp. 1337-1355, 2009, doi: 10.1139/T09-065.
  • [2] G.B. Baecher and T.J. Christian, Reliability and statistics in geotechnical engineering. John Wiley & Sons, 2003.
  • [3] Y. Honjo, “Challenges in geotechnical reliabilit based design”, in Proceedings of 3rd International Symposium On Geotechnical Safety and Risk. Munich, 2011.
  • [4] T. Godlewski and W. Bogusz, “Philosophy of geotechnical design in civil engineering - possibilities and risks”, Bulletin of The Polish Academy of Science, Technical Sciences, vol. 67, no. 2, pp. 289-306, 2019, doi: 10.24425/bpas.2019.128258.
  • [5] W.S. Forrest and T.L.L. Orr, “Reliability of shallow foundations designed to Eurocode 7”, Georisk, vol. 4, no. 4, pp. 186-207, 2010.
  • [6] K.K. Phoon, Numerical recipes for reliability analysis - a primer. Reliability-based design in geotechnical engineering. London: Taylor & Francis, 2008.
  • [7] L. Czarnecki and D. Van Gemert, “Scientific basis and rules of thumb in civil engineering: conflict or harmony?”, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 64, no. 4, pp. 665-673, 2016, doi: 10.1515/bpasts-2016-0076.
  • [8] W. Bogusz and M. Witowski, “Variability of overconsolidated soils from Poland in geotechnical practice”, in Proceedings XVI Danube - European Conference on Geotechnical Engineering. Ernst & Sohn, 2018, pp. 585-590.
  • [9] T.L.L. Orr, “Defining and selecting characteristic values of geotechnical parameters for designs to Eurocode 7”, Georisk, vol. 11, no. 1, pp. 103-15, 2017, doi: 10.1080/17499518.2016.1235711.
  • [10] S. Lacasse and F. Nadim, “Risk and reliability in geotechnical engineering”, presented at International Conference on Case Historical in Geotechncial Engineering, 1998.
  • [11] Joint TC205/TC304 Working Group on Discussion of statistical/reliability methods for Eurocodes - Final Report. ISSMGE, 2017.
  • [12] J. Wierzbicki, Evaluation of subsoil overconsolidation by means of in situ tests at aspect of irs origin. Rozprawy Naukowe, no. 410. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, 2010 (in Polish).
  • [13] P.K. Robertson, “Cone penetration test (CPT)-based soil behavior type (SBT) classification system - an update”, Canadian Geotechnical Journal, vol. 53, no. 12, pp. 1910-1927, 2016, doi: 10.1139/cgj-2016-0044.
  • [14] J.H. Atkinson, “Non-linear soil stiffness in routine design”, Géotechnique, vol. 50, no. 5, pp. 487-508, 2000, doi: 10.1680/geot.2000.50.5.487.
  • [15] R.J. Chandler, “Stiff sedimentary clays: geological origins and engineering properties”, Geotechnique, vol. 60, no. 12, pp. 891-902, 2010, doi: 10.1680/geot.07.KP.001.
  • [16] C.R.I. Clayton, “Stiffness at small strain: research and practice”, Geotechnique, vol. 61, no. 1, pp. 5-37, 2011, doi: 10.1680/geot.2011.61.1.5.
  • [17] P.J. Vardanega and M.D. Bolton, “Strength mobilization in clays and silts”, Canadian Geotechnical Journal, vol. 48, no. 10, pp. 1485-1503, 2011, doi: 10.1139/t11-052.
  • [18] Eurocode 7 PN-EN 1997-2:2008: Geotechnical Design - Part 2: Ground investigation and testing. 2008.
  • [19] P.W. Mayne and G.J. Rix, “Gmax-qc relationships for clays”, Geotechnical Testing Journal, vol. 16, no. 1, pp. 54-60, 1993.
  • [20] A. Gasparre, S. Nishimura, N. Minh, M. Coop, and R. Jardine, “The stiffness of natural London Clay”, Geotechnique, vol. 57, no. 1, pp. 33-47, 2007, doi: 10.1680/geot.2007.57.1.33.
  • [21] B. Simpson, “Engineering in stiff sedimentary clays”, Geotechnique, vol. 60, no. 12, pp. 903-911, 2010, doi: 10.1680/geot.07.KP.002.
  • [22] Z. Młynarek, J. Wierzbicki, and T. Lunne, “On the influence of overconsolidation effect on the compressibility assessment of subsoil by means of CPTU and DMT”, Annual Warsaw University of Life Science - SGGW, Land Reclamation, vol. 48, no. 3, 2016.
  • [23] A. Brosse, R. Hosseini Kamal, R.J. Jardine, and M. Coop, “The shear stiffness characteristics of four Eocene-to-Jurassic UK stiff clays”, Geotechnique, vol. 67, no. 3, 2017.
  • [24] H.J. Gibbs and W.Y. Holland, Petrographic and engineering properties of loess. Engineering Monograph, no. 28. US Department of the Interior, Bureau of Reclamation, Denver, Colorado, 1960.
  • [25] P. Delage, J. Cui, and P. Antoine, “Geotechnical problems related with loess deposits in Northern France”, in International Conference on Problematic Soils, Famagusta, North Cyprus. Cyprus, 2006, pp. 517-540.
  • [26] Z. Liu, F. Liu, F. Ma, M. Wang, X. Bai, Y. Zheng, H. Yin, and G. Zhang, “Collapsibility, composition, and microstructure of loess in China”, Canadian Geotechncial Journal, vol. 53, no. 4, pp. 673-686, 2016, doi: 10.1139/cgj-2015-0285.
  • [27] M. Dysli and W. Steiner, Correlations in soil mechanics. PPUR Presses Polytechniques, 2011.
  • [28] T. Godlewski and M. Wszedyrówny-Nast, “Correlations of regional geotechnical parameters on the basis of CPTU and DMT tests”, in Proceedings of 13th Baltic Sea Geotechnical Conference. Vilnius Gediminas Technical University Press, 2016, pp. 22-27.
  • [29] R. Kaczyński, “Overconsolidation and microstructures in Neogene clays from the Warsaw area”, Geological Quarterly, vol. 47, no. 1, pp. 43-54, 2003.
  • [30] M.L. Lipiński and W. Tymiński, “Evaluation of initial stiffness of natural overconsolidated soils”, in Proceedings of 15th European Conference on Soil Mechanics Geotechnical Engineering. IOS Press, 2011, pp. 209-214.
  • [31] Z. Młynarek, J. Wierzbicki, and A. Smaga, “Initial shear modulus of soils of different origin from SCPTU & SDMT”, in 6th International Workshop In situ & Laboratory Chararacteristics of OC subsoil. Poznan, Poland, 2017, pp. 57-68.
  • [32] S. Rabarijoely, “A new approach to the determination of mineral and organic soil types based on dilatometer tests (DMT)”, Applied Sciences, vol. 8, no. 11, 2018, doi: 10.3390/app8112249.
  • [33] K. Nepelski and A. Lal, “CPT parameters of loess subsoil in lublin area”, Applied Sciences, vol. 11, no. 13, 2021, doi: 10.3390/app11136020.
  • [34] K. Nepelski and M. Rudko, “CPT-DMT correlation for loess subsoil from Lublin area in Poland”, presented at 20th International Conference on Soil Mechanics and Geotechnical Engineering, 1-5 May 2022, Sydney.
  • [35] P. Popielski, The influence of deep foundations on urban environment. Publishing House of the Warsaw University of Technology, 2012.
  • [36] M. Mitew-Czajewska, “Parametric study of deep excavation in clays”, Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 66. no. 5, pp. 747-754, 2018, doi: 10.24425/bpas.2018.125342.
  • [37] R.J. Jardine, A. Potts, D.M. Fourie, and B.J. Burland, “Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction”, Geotechnique, vol. 36, no.3, pp. 377-396, 1986.
  • [38] C.R.I. Clayton, “Stiffness at small strain: research and practice”, Geotechnique, vol. 61, no. 1, pp. 5-37, 2011, doi: 10.1680/geot.2011.61.1.5.
  • [39] C.G. Foti, G.J. Lai Rix, and C. Strobbia, Surface wave methods for near-surface site characterization. CRC Press Taylor & Francis Group, 2015.
  • [40] M.C. Matthews, C.R.I. Clayton, and Y. Own, “The use of geophysical techniques to determine geotechnical stiffness parameters”, Geotechnical Engineering, vol. 143, no. 1, pp. 31-42, 2000, doi: 10.1680/geng.2000.143.1.31.
  • [41] J.H. Atkinson, “Non-linear soil stiffness in routine design”, Geotechnique, vol. 50, no. 5, pp. 487-508, 2000, doi: 10.1680/geot.2000.50.5.487.
  • [42] B.G. Clarke, D.B. Hughes, and S. Hashemi, “Physical characteristics of subglacial tills”, Geotechnique, vol. 58, no. 1, pp. 67-76, 2008, doi: 10.1680/geot.2008.58.1.67.
  • [43] A. Gasparre, S. Nishimura, N. Minh, M. Coop, and R. Jardine, “The stiffness of natural London Clay”, Geotechnique, vol. 57, no. 1, pp. 33-47, 2007, doi: 10.1680/geot.2007.57.1.33.
  • [44] P.J. Vardanega and M.D. Bolton, “Strength mobilization in clays and silts”, Canadian Geotechnical Journal, vol. 48, pp. 1485-1503, 2011, doi: 10.1139/t11-052.
  • [45] A. Brosse, R. Hosseini Kamal, R.J. Jardine, and M.R. Coop, “The shear stiffness characteristics of four Eocene-to-Jurassic UK stiff clays”, Geotechnique, vol. 67, no, 3, pp. 242-259, 2017, doi: 10.1680/jgeot.15.P.236.
  • [46] M.L. Lipiński and W. Tymiński, “Evaluation of initial stiffness of natural overconsolidated soils”, in Proceedings of 15th European Conference on Soil Mechanics Geoechncial. Engineering. 2011, pp. 209-214.
  • [47] T. Godlewski and T. Szczepański, “Determination of soil stiffness parameters using in-situ seismic methods-insight in repeatability and methodological aspects”, presented at 4th International Conference Site Characterisation, Porto Galinhas, Brasil, 2012.
  • [48] T. Godlewski and M. Wszedyrówny-Nast, “Correlations of regional geotechnical parameters on the basis of CPTU and DMT tests”, in Proceedings of 13th Baltic Sea Geotechncial Conference. Vilnius Gediminas Tech. Univ. Press, 2016, pp. 22-27.
  • [49] Z. Młynarek, J. Wierzbicki, and K. Stefaniak, “Interrelationship between undrained shear strength from DMT and CPTU tests for soils of different origin”, Geotechnical Testing Journal, vol. 41, no. 5, 2018, doi: 10.1520/GTJ20170365.
  • [50] J.M. Duncan and C. Chang, “Non-linear analysis of stress and strain in soils”, Journal Soil Mechanics Foundation, ASCE, vol. 96, pp. 1629-1653, 1970.
  • [51] C.R.I. Clayton and S.A. Khatrush, “A new device for measuring local axial strains on triaxial specimens”, Geotechnique, vol. 36, no. 4, pp. 593-597, 1986, doi: 10.1680/geot.1986.36.4.593.
  • [52] R.J. Jardine, M.J. Symes, and J.B. Burland, “The measurement of soil stiffness in the triaxial apparatus”, Geotechnique, vol. 34, no. 3, pp. 323-340, 1984, doi: 10.1680/geot.1984.34.3.323.
  • [53] R.J. Jardine, A.B. Fourie, J. Maswoswe, and J.B. Burland, “Field and laboratory measurements of soil stiffness”, in Proceedings 11th International Conference on Soil Mechanics and Foundation Engineering - San Francisco, vol. 2. 1985, pp. 511-514.
  • [54] A.P. Butcher, R.G. Campanella, A.M. Kaynia, and K.R. Massarsch, “Seismic cone down hole procedure to measure shear wave velocity - a guideline”, presented at ISSMGE TC 10, 2005.
  • [55] B.M. Darendeli, “Development of a new family of normalized modulus reduction and material damping curves”, PhD thesis, University of Texas at Austin, TX, USA, 2001.
  • [56] K.R. Massarsch, “Deformation properties of fine-grained soils from seismic tests”, in Proceedings International Conference on Site Characterization in Situ Characterization ’2. Porto, 2004, pp. 133-146.
  • [57] S. Marchetti, P. Monaco, G. Totani, and D. Marchetti, “In situ tests by seismic dilatometer (SDMT)”, in Proceedings From Research to Practice in Geotechnnical Engineering, 2008, pp. 292-311.
  • [58] S. Yamashita, T. Kawaguchi, Y. Nakata, T. Mikami, T. Fujiwara, and S. Shibuya, “Interpretation of international parallel test on the measurement of Gmax using bender elements”, Soils and Foundations, vol. 49, no. 4, pp. 631-650, 2009.
  • [59] W. Sas, A. Szymański, and K. Gabryś, “The behavior of natural cohesive soils under dynamic excitations”, in Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013, vol. 1. Paris, 2013, pp. 1587-1590.
  • [60] T. Godlewski and T. Szczepański, “Measurement of soil shear wave velocity using in situ and laboratory seismic methods - some methodological aspects”, Geological Quarterly, vol. 59, no 2, pp. 358-366, 2015, doi: 10.7306/gq.1182.
  • [61] W. Bogusz and M. Witowski, “Small-strain stiffness of fine-grained soils from Poland based on a laboratory test database”, in Proceedings of the XVII ECSMGE-2019 Geotechnical Engineering foundation of the future. Reykjavik Iceland, 2019.
  • [62] R. Kaczyński, Warunki geologiczno-inżynierskie na obszarze Polski. PIG, 2017.
  • [63] J. Malinowski, Badania geologiczno-inżynierskie lessów (Geological-engineering loess investigation). Wydawnictwo Geologiczne, 1971.
  • [64] H. Maruszczak, “Definicja i klasyfikacja lessów oraz utworów lessopodobnych (Loess and loess-like soil definition and classification)”, Przegląd Geologiczny, vol. 48, no. 7, pp. 580-586, 2000.
  • [65] K.H. Head and R.J. Epps, Manual of Soil Laboratory Testing. Vol. III Effective Stress Tests, 3rd ed. London: Whittles Publishing, 2014.
  • [66] C.R.I. Clayton, “Stiffness at small strain: research and practice”, Geotechnique, vol. 61, no. 1, pp. 5-37, 2011, doi: 10.1680/geot.2011.61.1.5.
  • [67] M. Witowski, “Local displacement transducer with miniature position encoder”, Geotechnical Testing Journal, vol. 41, no. 6, pp. 1147-1154, 2018, doi: 10.1520/GTJ20170016.
  • [68] C. Clayton, S. Khatrush, A. Bica, and A. Siddique, “The use of Hall effect semiconductors in geotechnical instrumentation”, Geotechnical Testing Journal, vol. 12, no. 1, pp. 69-76, 1989, doi: 10.1520/GTJ10676J.
  • [69] A.W. Bishop and D.J. Henkel, The measurement of soil properties in the triaxial test. London: Edward Arnold (Publishers), Ltd., 1957.
  • [70] R. Dyvik and C. Madhus, “Lab measurements of Gmax using bender elements”, in Advance in the art of testing soils under cyclic conditions, V. Koshla, Ed. New York: ASCE, 1985, pp. 186-196.
  • [71] J.S. Lee and J.C. Santamarina, “Bender elements: performance and signal interpretation”, Journal of Geotechnical and Geoenviromental Engineering, vol. 131, pp. 1063-1070, 2005.
  • [72] F. Chyliński, A. Michalik, and M. Kozicki, “Effectiveness of curing compounds for concrete”, Materials, vol. 15, no. 7, 2022, doi: 10.3390/ma15072699.
  • [73] F. Chyliński, A. Goljan, and A. Michalik, “Fly ash with ammonia: properties and emission of ammonia from cement composites”, Materials, vol. 14, no. 4, 2021, doi: 10.3390/ma14040707.
  • [74] T.C. Kim and M. Novak, “Dynamic properties of some cohesive soils of Ontario”, Canadian Geotechnical Journal, vol. 18, no. 3, pp. 371-389, 1981.
  • [75] M. Vucetic, “Soil properties and seismic response”, in Procedings of the 10th World Conference on Earthquake Engineering. A.A. Balkema, 1992, pp. 1199-1204.
  • [76] S. Amoroso, P. Monaco, B.M. Lehane, and D. Marchetti, “Examination of the potential of the seismic dilatometer to estimate in situ stiffness decay curves in various soil types”, Soils and Rocks, vol. 37, no. 3, pp. 177-194, 2014, doi: 10.28927/SR.373177.
  • [77] T. Godlewski, “Evaluation of stiffness degradation curves from in situ tests in various soil types”, Archives of Civil Engineering, vol. 64, no. 4, pp. 285-307, 2018, doi: 10.2478/ace-2018-0075.
  • [78] T. Ku, S. Subramanian, S.W. Moon, and J. Jung, “Stress dependency of shear-wavevelocity measurements in soils”, ASCE Journal Geotechnical Geoenvironmental Engineering, vol. 143, no. 2, 2017, doi: 10.1061/(ASCE)GT.1943-5606.0001592.
  • [79] R.F. Obrzud and A. Truty, The HardeningSoil model - a practical guidebook, ZSoil.PC100701 report. Switzerland: Zace Services, 2018.
  • [80] T. Benz, “Small-strain stiffness of soilsand its numerical consequences”, PhD thesis, Universitat Stuttgart, 2007.
  • [81] M. Witowski, “Small strains stiffness assessment of selected soils”, PhD thesis, Building Research Institute, Warsaw, 2020.
  • [82] R. Chmielewski, L. Kruszka, R. Rekucki, and K. Sobczyk, “Experimental investigation of dynamic behavior of silty sand”, Archives of Civil Engineering, vol. 67, no. 1, pp. 481-498, 2021, doi: 10.24425/ace.2021.136484.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-955fa22b-daca-46c0-a2c6-136de27cd2f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.