PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The effect of various surfactants on fatty acid for apatite flotation and their adsorption mechanizm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The synergistic effect of surfactants, i.e., Tween-80 (polyethylene glycol sorbitan monooleate), Span-80 (sorbitanoleate), and MES (fatty acid methyl ester sulfonates), on fatty acid collectors were investigated using single mineral flotation experiments, surface tension measurement, Fourier transform infrared spectrum, and contact angle measurements. The single mineral flotation experiments showed that it was possible to efficiently separate apatite from magnetite, quartz, and biotite by mixing fatty acids with surfactants. The surface tension measurement showed that the surfactants could significantly reduce the surface tension and Critical Micelle Concentration (CMC) of fatty acids. Fourier transform infrared spectroscopy analysis indicated that all of the surfactants did not react with the fatty acids, but only physically adsorbed on the surface of apatite, thus promoting the chemical adsorption of fatty acids on apatite. However, the surfactant chemisorbed on magnetite and competing with a fatty acid, which led to a decrease in the flotation recovery. The results for contact angle measurement showed that the contact angle difference between apatite and magnetite increased with the addition of surfactant, and resulted in an efficient separation.
Słowa kluczowe
Rocznik
Strony
46--56
Opis fizyczny
Bibliogr. 30 poz., fot., rys.
Twórcy
autor
  • School of Mining Engineering, University of Science and Technology Liaoning, 185 Qianshan Middle Road, Lishan District Anshan City, Liaoning 114051, China
autor
  • School of Mining Engineering, University of Science and Technology Liaoning, 185 Qianshan Middle Road, Lishan District Anshan City, Liaoning 114051, China
autor
  • School of Mining Engineering, University of Science and Technology Liaoning, 185 Qianshan Middle Road, Lishan District Anshan City, Liaoning 114051, China
Bibliografia
  • APLING, A., 1992. Flotation: theory, reagents and ore testing: Ronald D. Crozier, Pergamon Press, Oxford. ISBN 0-08-041864-3, 343 pages. Corros. Sci, 33(12), 1997-1998.
  • BADA, S., GCANGA, S., FALCON, L., FALCON, R., MAKHULA, M., 2013. Electrostatic concentration of phosphate flotation concentrate. Int. J. Min. Sci. Techno, 23(3), 403–406.
  • ESLAMI, H., SOLATI-HASHJIN, M., TAHRIRI, M., 2009. The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Mat. Sci. Eng. C-Mater, 29(4), 1387–1398.
  • FA, K., JIANG, T., NALASKOWSKI, J., MILLER, J.D., 2004. Optical and spectroscopic characteristics of oleate adsorption as revealed by FTIR analysis. Langmuir, 20(13), 5311–5321.
  • FARROKHPAY, S., 2011. The significance of froth stability in mineral flotation—A review. Adv. Colloid. Interfac, 166(1-2), 1–7.
  • FILIPPOVA, I.V., FILIPPOV, L.O., DUVERGER, A., SEVEROV, V.V., 2014. Synergetic effect of a mixture of anionic and non-ionic reagents: Ca mineral contrast separation by flotation at neutral pH. Miner. Eng, 66-68, 135–144.
  • GUIMARAES, R.C., ARAUJO, A.C., PERES, A.E.C., 2005. Reagents in igneous phosphate ores flotation. Miner. Eng, 18(2), 199–204.
  • HANUMANTHA RAO, K., FORSSBERG, K.S.E., 1997. Mixed collector systems in flotation. Int. J. Miner. Process, 51(1-4), 67–79.
  • HORTA, D., DE MELLO MONTE, M.B., DE SALLES LEAL FILHO, E.L., 2016. The effect of dissolution kinetics on flotation response of apatite with sodium oleate. Int. J. Miner. Process, 146, 97–104.
  • HUA, X.Y., ROSEN, M.J., 1982. Calculation of the coefficient in the Gibbs equation for the adsorption of ionic surfactants from aqueous binary mixtures with non-ionic surfactants. J. Colloid. Interf. Sci, 87(2), 469–477.
  • KHOSHDAST, H. and SAM, A., 2011. Flotation frothers: Review of their classifications, properties and preparation. Open Mineral Processing Journal, 4(1), 25-44.
  • KOU, J., TAO, D., XU, G., 2010. Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D. Int. J. Miner. Process, 95(1-4), 1–9.
  • LANE, G.S., 2011. Flotation Reagents. Patent Cooperation Treaty, International Publication Number: WO 2011/085445 A1, https://www.freepatentsonline.com/wo2011085445.html.
  • LI, Y., LEI, D.S., & XU, S., 2002. Effect of metal ions in pulp on flotation separation of sillimanite from quartz. Journal of The Chinese Ceramic Society, 03, 362-365.
  • LI, M.D., CONG, X., ZHU, L., KONG, L., ZHANG, Z., TIAN, A., LI, L., 2016. Experimental study on recycling dredged marine sediment and phosphate tailing to produce earth fill. Mar. Georesour Geotec, 35(4), 586–591.
  • LOUTOU, M., MISRAR, W., KOUDAD, M., MANSORI, M., GRASE, L., FAVOTTO, C., HAKKOU, R., 2019. Phosphate mine tailing recycling in membrane filter manufacturing: Microstructure and filtration suitability. Minerals-Basel, 9(5), 318.
  • LUO, H.H., ZHONG, K.N., WEI Y.H., 2000. Effects of synergism on the flotation performance of apatite at environmental temperature. Industrial Minerals & Processing, 05, 8-10.
  • MARTINEZ, A.L., URIBE, A.S., 1995. Interfacial properties of celestite and strontianite in aqueous solutions. Miner. Eng, 8(9), 1009–1022.
  • OLIVEIRA, M.S., SANTANA, R.C., ATAÍDE, C.H., BARROZO, M.A.S., 2011. Recovery of apatite from flotation tailings. Sep. Purif. Technol, 79(1), 79–84.
  • OLIVEIRA, P.D., MANSUR, H., MANSUR, A., SILVA, G.D., PERES, A.E.C., 2019. Apatite flotation using pataua palm tree oil as collector. J. Mater. Res. Technol, 8(5), 4612–4619.
  • RAO, K.H., ANTTI, B.M., FORSSBERG, E., 1990. Mechanism of oleate interaction on salt-type minerals, Part II. Adsorption and electrokinetic studies of apatite in the presence of sodium oleate and sodium metasilicate. Int. J. Miner. Process, 28(1-2), 59–79.
  • RAO, K.H., DWARI, R.K., LU, S., VILINSKA, A., SOMASUNDARAN, P., 2011. Mixed anionic/non-ionic collectors in phosphate gangue flotation from magnetite fines. Open Mineral Processing Journal, 4(1), 14.
  • RUAN, Y., ZHANG, Z., LUO, H., XIAO, C., ZHOU, F., CHI, R., 2017. Ambient temperature flotation of sedimentary phosphate ore using cottonseed oil as a collector. Minerals-Basel, 7(5), 65.
  • SADEGHINEZHAD, E., QADEER SIDDIQUI, M.A., ROSHAN, H., REGENAUER-LIEB, K., 2020. On the interpretation of contact angle for geomaterial wettability: Contact area versus three-phase contact line. J. Petrol. Sci. Eng, 107579.
  • SCHWUGER, M., 1973. Mechanism of interaction between ionic surfactants and polyglycol ethers in water. J. Colloid. Interf. Sci, 43(2), 491–498.
  • SIS, H., CHANDER, S., 2003. Adsorption and contact angle of single and binary mixtures of surfactants on apatite. Miner. Eng, 16(9), 839–848.
  • SOMASUNDARAN, P., ANANTHAPADMANABHAN, K., IVANOV, I., 1984. Dimerization of oleate in aqueous solutions. J. Colloid. Interf. Sci, 99(1), 128–135.
  • VOLD, M.J., 1964. Colloidal Surfactants. Some Physicochemical Properties. J. Am. Chem. Soc, 86(7), 1461–1461.
  • XU, L., WU, H., DONG, F., WANG, L., WANG, Z., XIAO, J., 2013. Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica. Miner. Eng, 41, 41–45.
  • ZHU, Z., WANG, D., YANG, B., YIN, W., ARDAKANI, M.S., YAO J., DRELICH, J.W., 2020. Effect of nano-sized roughness on the flotation of magnesite particles and particle-bubble interactions. Miner. Eng, 151, 106340.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9557ebe4-2560-4762-af9c-525e61c8b80a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.