PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of some thermophysical properties of sn500 lubrication oil blended with SIO2, AL2O3 and TIO2 nano-additives, using fuzzy logic

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nano-additives are generally blended with the base lubricant oil, to enhance the lubricant characteristics such as wear, coefficient of friction (CoF), thermal conductivity, density, and flash and fire points of the lubricant. In this research, nano-additives of SiO2, Al2O3 and TiO2 are blended with the base SN500 oil with different proportions of mixture. When these three nanoparticles are used together in base oil, they enhance most of the desirable properties of a lubricant; 27 samples with three different levels of a mixture of nano-additives are identified using factorial design of experiments. The experimental outcomes for the selected three characteristics of interest of density, flash point and fire point are determined. Conducting experiments for ‘n’ number of samples with different proportions of mixture of nano-additives is a cumbersome, expensive and time-consuming process, in order to determine the optimum mix of nano-additives for the desirable level of characteristics of interest. In this research, attempt has been made to apply fuzzy logic to simulate a greater number of samples with different proportions of a mixture of three nano-additives with the respective outcomes of characteristics of three thermophysical properties. Out of the numerous samples simulated using fuzzy logic, the sample with the optimum mix of three nano-additives of SiO2, Al2O3 and TiO2 blended with the base oil is identified for the desirable level of characteristics of interest of density, flash point and fire point. The values of the identified sample are found to be at the desirable level of 0.9008 gm/ml, 231°C and 252°C, respectively.
Słowa kluczowe
Rocznik
Strony
352--360
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603 203, India
autor
  • Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603 203, India
Bibliografia
  • 1. Wang B, Wang X, Lou W, Hao J. Thermal conductivity and rheological properties of graphite/oil nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2012;414:125-131. https://doi.org/10.1016/j.colsurfa.2012.08.008
  • 2. Pico D F M, da Silva L R R, Mendoza O S H, Bandarra Filho E P. Experimental study on thermal and tribological performance of diamond nano-lubricants applied to a refrigeration system using R32. International Journal of Heat and Mass Transfer. 2020;152: 119493. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119493
  • 3. Sankar E, Duraivelu K. The effect of SiO2-Al2O3-TiO2 nanoparticle additives on lubrication performance: Evaluation of wear and coefficient of friction. Materials Today: Proceedings. 2022;68:2387-2392. https://doi.org/10.1016/j.matpr.2022.09.107
  • 4. Narayanasarma S, Kuzhiveli B T. Evaluation of the properties of POE/SiO2 nanolubricant for an energy-efficient refrigeration system–An experimental assessment. Powder Technology. 2019;356:1029-1044. https://doi.org/10.1016/j.powtec.2019.09.024
  • 5. Narayanasarma S, Kuzhiveli BT. The effect of silica nanoparticle on thermal, chemical, corrosive, and the nature‐friendly properties of refrigerant compressor lubricants - A comparative study. Asia‐Pacific Journal of Chemical Engineering. 2020;15(5):2551. https://doi.org/10.1002/apj.2551
  • 6. Desai N, Nagaraj A M, Sabnis N. Analysis of thermo-physical properties of SAE20W40 engine oil by the addition of SiO2 nanoparticles. Materials Today: Proceedings. 2021;47:5646-5651. https://doi.org/10.1016/j.matpr.2021.03.688
  • 7. Awad A M, Sukkar K A, Jaed D M. Development of an extremely efficient Iraqi nano-lubricating oil (Base-60) employing SiO2 and Al2O3 nanoparticles. In AIP Conference Proceedings. 2022;2443(1). https://doi.org/10.1063/5.0091951
  • 8. Koppula S B, Sudheer N V V S. Experimental Studies and Comparison of Various Mechanical and Thermal Properties of Lubricants by Adding Nano Additives of Al2O3 and SiO2. In IOP Conference Series: Materials Science and Engineering. 2018;455(1):012056.
  • 9. https://doi.org/10.1088/1757-899X/455/1/012056
  • 10. Raj R A, Samikannu R, Yahya A, Mosalaosi M. Investigation of survival/hazard rate of natural ester treated with Al2O3 nanoparticle for power transformer liquid dielectric. Energies. 2021;14(5):1510. https://doi.org/10.3390/en14051510
  • 11. Gumus S, Ozcan H, Ozbey M, Topaloglu B. Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine. Fuel. 2016;163:80-87. https://doi.org/10.1016/j.fuel.2015.09.048
  • 12. Muthurathinama S G, Perumalb A V. Experimental study on effect of nano Al2O3 in physiochemical and tribological properties of vegetable oil sourced biolubricant blends. Digest journal of nanomaterials and biostructures. 2022;17(1):47-58. https://doi.org/10.15251/DJNB.2022.171.47
  • 13. Sajith V, Mohiddeen M D, Sajanish M B, Sobhan C B. An investigation of the effect of addition of nanoparticles on the properties of lubricating oil. In Heat Transfer Summer Conference. 2007;42754:329-335. https://doi.org/10.1115/HT2007-32772
  • 14. Awad A M, Sukkar K A, Jaed D M. Deep Understanding of the Mechanism and Thermophysical Properties of Prepared Nanofluids Lube Oil Stock-60 with Al2O3 NPs. Journal of Applied Sciences and Nanotechnology. 2022;2(3):37-51. http://doi.org/ 10.53293/jasn.2022.4394.1107
  • 15. Hadi N J, Abd Al-Hussain R K. Physical properties improvement of the diesel engine lubricant oil reinforced nanomaterials. Journal of Mechanical and Energy Engineering. 2018;2(3):233-244. https://doi.org/10.30464/jmee.2018.2.3.233
  • 16. Sukkar K A, Karamalluh A A, Jaber T N. Rheological and thermal properties of lubricating oil enhanced by the effect of CuO and TiO2 nano-additives. Al-Khwarizmi Engineering Journal. 2019;15(2):24-33. https://doi.org/10.22153/kej.2019.12.002
  • 17. Kumar M, Afzal A, Ramis M K. Investigation of physicochemical and tribological properties of TiO2 nano-lubricant oil of different concentrations. TRIBOLOGIA-Finnish Journal of Tribology. 2017;35(3):6-15. https://journal.fi/tribologia/article/view/60703
  • 18. Singh Y, Chaudhary V, Pal V. Friction and wear characteristics of the castor oil with TiO2 as an additive. Materials Today: Proceedings. 2020;26:2972-2976. https://doi.org/10.1016/j.matpr.2020.02.612
  • 19. Deepak S N, Ram C N. Physio-chemical study of traditional lubricant SAE 20 W40 and virgin coconut oil using TiO2 nano-additives. Materials Today: Proceedings. 2021;42:1024-1029. https://doi.org/10.1016/j.matpr.2020.12.046
  • 20. Ahmadi H, Rashidi A, Nouralishahi A, Mohtasebi S S. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. International Communications in Heat and Mass Transfer. 2013;46:142-147. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.003
  • 21. Hafeez M, Krawczuk M, Shahzad H. An Overview of Heat Transfer Enhancement Based Upon Nanoparticles Influenced By Induced Magnetic Field with Slip Condition Via Finite Element Strategy. Acta Mechanica et Automatica. 2022;16(3):200-206. https://doi.org/10.2478/ama-2022-0024
  • 22. Bouhamatou Z, Abedssemed F. Fuzzy Synergetic Control for Dynamic Car-Like Mobile Robot. Acta Mechanica et Automatica. 2022;16(1):48-57. https://doi.org/10.2478/ama-2022-0007
  • 23. Kumar S, Jain S, Kumar H. Application of adaptive neuro-fuzzy inference system and response surface methodology in biodiesel synthesis from jatropha–algae oil and its performance and emission analysis on diesel engine coupled with generator. Energy. 2021;226:120428. https://doi.org/10.1016/j.energy.2021.120428
  • 24. Kumar S, Jain S, Kumar H. Performance evaluation of adaptive neuro-fuzzy inference system and response surface methodology in modeling biodiesel synthesis from jatropha–algae oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2018;40(24):3000-3008.
  • 25. Kumar S, Bansal S. Performance evaluation of ANFIS and RSM in modeling biodiesel synthesis from soybean oil. Biosensors and Bioelectronics: X. 2023;15:100408. https://doi.org/10.1016/j.biosx.2023.100408
  • 26. Kumar S. Estimation capabilities of biodiesel production from algae oil blend using adaptive neuro-fuzzy inference system (ANFIS). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020;42(7):909-917. https://doi.org/10.1080/15567036.2019.1602203
  • 27. Shelton J, Saini N K, Hasan S M. Experimental study of the rheological behavior of TiO2- Al2O3/mineral oil hybrid nanofluids. Journal of Molecular Liquids. 2023;380:121688. https://doi.org/10.1016/j.molliq.2023.121688
  • 28. Kia S, Khanmohammadi S, Jahangiri A. Experimental and numerical investigation on heat transfer and pressure drop of SiO2 and Al2O3 oil-based nanofluid characteristics through the different helical tubes under constant heat fluxes. International Journal of Thermal Sciences. 2023;185:108082. https://doi.org/10.1016/j.ijthermalsci.2022.108082
  • 29. Sankar E, Duraivelu K. Simulation of optimal mix of SiO2-TiO2-Al2O3 nano additives for the minimal wear and coefficient of friction of lubricant using fuzzy logic. Jurnal Teknologi. 2023;86(1):125-133. https://doi.org/10.11113/jurnalteknologi.v86.20402
  • 30. Duraivelu K. Digital transformation in manufacturing industry – a comprehensive insight. Journal of Materials Today : Proceedings. 2022;68(6):1825-1829. https://doi.org/10.1016/j.matpr.2022.07.409.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95577bdf-1c55-4799-a4b3-acd899fc72f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.