PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency analysis and promising applications of silicon drift detectors

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Silicon drift detectors (SDDs) stand as a groundbreaking technology with a diverse range of applications, particularly in the fields of physics and medical imaging. This paper provides an analysis of the performance of SDDs as detectors for X-ray radiation measurement, shedding light on their exceptional capabilities and potential in medical imaging. Compared to conventional detectors, SDDs have several notable advantages. Their high efficiency in capturing X-rays allows them to provide outstanding sensitivity and accuracy in detecting even low-energy X-rays. In addition, SDDs exhibit significantly low electronic-noise levels, contributing to better signal-to-noise ratio and better data quality. Furthermore, their high resolution enables exact spatial localization of radiation sources, which is essential for accurate diagnosis. This research is devoted to the evaluation of efficiency and potential application of SDDs in X-ray spectroscopy, with particular emphasis on their application in medical imaging. We focus on evaluating the performance characteristics of SDDs, such as their linearity, stability and sensitivity in detecting X-rays. The aim is to highlight the suitability of SDDs for a wide range of applications.
Słowa kluczowe
Rocznik
Strony
74--79
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, Frascati, Rome, Italy
  • M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
  • Theranostics Center, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Ou X, Chen X, Xu X, Xie L, Chen X, Hong Z, et al. Recent development in X-ray imaging technology: Future and challenges. Research (Wash D C) 2021;2021:9892152. doi: 10.34133/2021/9892152.
  • 2. Ballabriga R, Alozy J, Campbell M, Frojdh E, Heijne EHM, Koenig T, et al. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging. J Instrum 2016;11:P01007. doi: 10.1088/1748-0221/11/01/ P01007.
  • 3. Curceanu C, Amirkhani A, Baniahmad A, Bazzi M, Bellotti G, Berucci C, et al. X-ray detectors for kaonic atoms research at DAFNE. Condens Matter 2019;4(2):42. doi: 10.3390/condmat4020042.
  • 4. Hanke R, Fuchs T, Uhlmann N. X-ray based methods for non-destructive testing and material characterization. Nucl Instrum Methods Phys Res A 2008;591(1):14-8. doi: 10.1016/j.nima.2008.03.016.
  • 5. Kruth JP, Bartscher M, Carmignato S, Schmitt R, De Chiffre L, Weckenmann A. Computed tomography for dimensional metrology. CIRP Annals 2011;60(2):821-42. doi: 10.1016/j.cirp.2011.05.006.
  • 6. Brock JD, Sutton M. Materials science and X-ray techniques. Materials Today 2008;11(11):52-5. doi: 10.1016/S1369-7021(08)70239-6.
  • 7. Mayo SC, Stevenson AW, Wilkins SW. In-line phase-contrast X-ray imaging and tomography for materials science. Materials 2012;5(5):937-65. doi: 10.3390/ma5050937.
  • 8. De Chiffre L, Carmignato S, Kruth J-P, Schmitt R, Weckenmann A. Industrial applications of computed tomography. CIRP Annals 2014;63(2):655-77. doi: 10.1016/j.cirp.2014.05.011.
  • 9. Cnudde V, Boone MN. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci Rev 2013;123:1-17. doi: 10.1016/j.earscirev.2013.04.003.
  • 10. Hupe O, Ankerhold U. X-ray security scanners for personnel and vehicle control: Dose quantities and dose values. Eur J Radiol 2007;63(2):237-41. doi: 10.1016/j.ejrad.2007.04.029.
  • 11. Wetter OE. Imaging in airport security: Past, present, future, and the link to forensic and clinical radiology. J Forensic Radiol Imaging 2013;1(4):152- 60. doi: 10.1016/j.jofri.2013.07.002.
  • 12. Hoheisel M. Review of medical imaging with emphasis on X-ray detectors. Nucl Instrum Methods Phys Res A 2006;563(1):215-24. doi: 10.1016/j.nima.2006.01.123.
  • 13. Körner M, Weber CH, Wirth S, Pfeifer K-J, Reiser MF, Treitl M. Advances in digital radiography: Physical principles and system overview. RadioGraphics 2007;27(3):675-86. doi: 10.1148/rg.273065075.
  • 14. Seibert JA. Projection X-ray imaging: Radiography, mammography, fluoroscopy. Health Phys. 2019;116(2):148-56. doi: 10.1097/HP.0000000000001028.
  • 15. Dobbins JT III, Godfrey DJ. Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol. 2003;48(19):R65-106. doi: 10.1088/0031-9155/48/19/r01.
  • 16. Goyal S, Kataria T. Image guidance in radiation therapy: techniques and applications. Radiol Res Pract. 2014;2014:705604. doi: 10.1155/2014/705604.
  • 17. Venkatesh E, Elluru SV. Cone beam computed tomography: basics and applications in dentistry. J Istanb Univ Fac Dent 2017;51(3 Suppl 1):S102-S121. doi: 10.17096/jiufd.00289.
  • 18. Alavi A, Werner TJ, Stępień EŁ, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. Bio-Algorithms and Med-Systems 2021;17(4):203-12. doi: 10.1515/bams-2021-0186.
  • 19. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys 2020;7:35. doi: 10.1186/s40658-020-00290-2.
  • 20. Kim EE, Murad V, Paeng JC, Cheon GJ. Atlas and Anatomy of PET/MRI, PET/CT and SPECT/CT. 2nd ed. Verlag: Springer International Publishing; 2022. doi: 10.1007/978-3-030-92349-5.
  • 21. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019;60(3):299-303. doi: 10.2967/jnumed.119.226498.
  • 22. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators. Phys Med Biol. 2021;66(17):175015. doi: 10.1088/1361-6560/ac16bd.
  • 23. Mostafapour S, Greuter M, van Snick JH, Brouwers AH, Dierckx RAJO, van Sluis J, et al. Ultra-low dose CT scanning for PET/CT. Med Phys 2024;51(1):139-55. doi: 10.1002/mp.16862.
  • 24. Lechner P, Eckbauer S, Hartmann R, Krisch S, Hauff D, Richter R, et al. Silicon drift detectors for high resolution room temperature x-ray spectroscopy. Nucl Instrum Methods Phys Res A 1996;377(2-3):346-51. doi: 10.1016/0168-9002(96)00210-0.
  • 25. Lechner P, Fiorini C, Hartmann R, Kemmer J, Krause N, Leutenegger P, et al. Silicon drift detectors for high count rate x-ray spectroscopy at room temperature. Nucl Instrum Methods Phys Res A 2001;458(1-2):281-87. doi: 10.1016/S0168-9002(00)00872-X.
  • 26. Gatti E, Rehak P. Semiconductor drift chamber - An application of a novel charge transport scheme. Nucl Instr and Meth A 1984;225(3):608-14. doi: 10.1016/0167-5087(84)90113-3.
  • 27. Bazzi M, Beer G, Bombelli L, Bragadireanu AM, Cargnelli M, Corradi G, et al. Performance of silicon-drift detectors in kaonic atom X-ray measurements. Nucl Instrum Methods Phys Res A 2011;628(1):264-67. doi: 10.1016/j.nima.2010.06.332.
  • 28. Campana R, Zampa G, Feroci M, Vacchi A, Bonvicini V, Del Monte E, et al. Imaging performance of a large-area Silicon Drift Detector for X-ray astronomy. Nucl Instrum Methods Phys Res A 2011;633(1):22-30. doi: 10.1016/j.nima.2010.12.237.
  • 29. Fiorini C, Gola A, Longoni A, Zanchi M, Restelli A, Perotti F, et al. A large-area monolithic array of silicon drift detectors for medical imaging. Nucl Instrum Methods Phys Res A 2006;568(1):96-100. doi: 10.1016/j.nima.2006.07.025.
  • 30. Fiorini C, Busca P, Peloso R, Abba A, Geraci A, Bianchi C, et al. The HICAM Gamma Camera. IEEE Trans Nucl Sci 2012;59(3):537-44. doi: 10.1109/TNS.2012.2192940.
  • 31. Sgaramella F, Miliucci M, Bazzi M, Bosnar D, Bragadireanu M, Carminati M, et al. The SIDDHARTA-2 calibration method for high precision kaonic atoms x-ray spectroscopy measurements. Phys Scr 2022;97:114002. doi: 10.1088/1402-4896/ac95da.
  • 32. Fiorini C, Longoni A, Lechner P. Single-side biasing of silicon drift detectors with homogeneous light-entrance window. IEEE Trans Nucl Sci 2000; 47(4):1691-5. doi: 10.1109/23.870862.
  • 33. Fiorini C, Longoni A, Perotti F, Labanti C, Rossi E, Lechner P, et al. A monolithic array of silicon drift detectors coupled to a single scintillator for γ-ray imaging with sub-millimeter position resolution. Nucl Instrum Methods Phys Res A 2003;512(1-2):265-71. doi: 10.1016/S0168-9002(03)01903-X.
  • 34. Strüder L, Niculae A, Holl P, Soltau H. Development of the Silicon Drift Detector for electron microscopy applications. Microscopy Today 2020;28(5):46-53. doi: 10.1017/S1551929520001327.
  • 35. Miliucci M, Iliescu M, Sgaramella F, Bazzi M, Bosnar D, Bragadireanu M, et al. Large area silicon drift detectors system for high precision timed x-ray spectroscopy. Meas Sci Technol 2022;33:095502. doi: 10.1088/1361-6501/ac777a.
  • 36. Bombelli L, Fiorini C, Frizzi T, Nava R, Greppi A, Longoni A. Low-noise CMOS charge preamplifier for X-ray spectroscopy detectors. IEEE NSS/ MIC 2010; 2010:135-8. doi: 10.1109/NSSMIC.2010.5873732.
  • 37. Curceanu C, Abbene L, Amsler C, Bazzi M, Bettelli M, Borghi G, et al. Kaonic atoms at the DAΦNE collider: a strangeness adventure. Front Phys 2023;11:1-13. doi: 10.3389/fphy.2023.1240250.
  • 38. Miliucci M, Bazzi M, Bosnar D, Bragadireanu M, Carminati M, Cargnelli M, et al. Silicon Drift Detectors’ spectroscopic response during the SIDDHARTA-2 kaonic helium run at the DAΦNE collider. Condens Matter 2021;6(4):47. doi: 10.3390/condmat6040047.
  • 39. Khreptak A, Amsler C, Bazzi M, Bosnar D, Bragadireanu M, Carminati M, et al. Studies of the linearity and stability of Silicon Drift Detectors for kaonic atoms X-ray spectroscopy. Acta Phys Pol B, Proc Suppl 2022;15(4):A1. doi: 10.5506/APhysPolBSupp.15.4-A1.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95500a72-b74d-43f7-84a8-f91c952d0849
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.