PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Ultrasonic Vibration on the Solidification of 35CrMo Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of ultrasonic vibration on the microstructure, elimination of casting defects and distribution of alloyed elements at macro-scale during solidification of 35CrMo steel has been investigated. Results show that ultrasonic treatment has a significant effect on the grain refinement, especially the fragmentation of the secondary dendritic arms of the studied steel. Density of the casting defects decreases and the alloyed elements are seen more even distribution at macro-scale with the introduction of ultrasonic vibration. Meanwhile, the ultrasonic vibration works more efficiently in the longitudinal direction than in the radial, and its efficiency declines with the distance from the radiator increasing.
Słowa kluczowe
Twórcy
  • Light Alloy Research Institute, Central South University, Changsha 410083, China
autor
  • Light Alloy Research Institute, Central South University, Changsha 410083, China
  • Collaborative Innovation Center of Advanced Nonferrous Structural Materials and Manufacturing, Central South University, Changsha 410083, China
Bibliografia
  • [1] C. Ruirun, Z. Deshuang, G. Jingjie, M. Tengfei, D. Hongsheng, S. Yanqing, F. Hengzhi, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 653, 23-26 (2016).
  • [2] R. Haghayeghi, P. Kapranos, Mater. Lett. 105, 213-215, (2013).
  • [3] D. G. McCartney, Int. Mater. Rev. 34 (1), 247-260, (1989).
  • [4] C. Xu, B. Lu, Z. Lu, W. Liang, J. Rare Earths 26 (4), 604-608 (2008).
  • [5] O. Keles, M. Dundar, J. Mater. Process. Technol. 186 (1-3), 125-137 (2007).
  • [6] A. Kermanpur, M. Jafari, M. Vaghayenegar, J. Mater. Process. Technol. 211 (2), 222-229 (2011).
  • [7] R. Haghayeghi, A. Heydari, P. Kapranos, Mater. Lett. 153, 175-178 (2015).
  • [8] G. Wang, M. S. Dargusch, M. Qian, D. G. Eskin, D. H. StJohn, J. Cryst. Growth 408, 119-124 (2014).
  • [9] S. Lü, S. Wu, W. Dai, C. Lin, P. An, J. Mater. Process. Technol. 212 (6), 1281-1287 (2012).
  • [10] Q. Liu, Q. Zhai, F. Qi, Y. Zhang, Mater. Lett. 61 (11-12), 2422-2425 (2007).
  • [11] D. G. Eskin, R. Nadella, L. Katgerman, Acta Mater. 56 (6), 1358-1365 (2008).
  • [12] D. G. Eskin, A. Jafari, L. Katgerman, Mater. Sci. Technol. 27 (5), 890-896 (2011).
  • [13] D. G. Eskin(Ed.), Ultrasonic Treatment of Light Alloy Melts, 2014 CRC Press, Taylor & Francis Group,New York.
  • [14] W. B. M. III, Y. T. Didenko, K. S. Suslick, Nature. 401 (21), 772-775 (1999).
  • [15] D. J. Flannigan, K. S. Suslick, Nature 434(3), 52-55 (2005).
  • [16] Y. T. Didenko, W. B. M. III, K. S. Suslick, Nature 407 (19), 877-879 (2000).
  • [17] Y. T. Didenko, K. S. Suslick, Nature 418 (25), 394-397 (2002).
  • [18] S. Wu, G. Zhong, P. An, L. Wan, H. Nakae, Trans. Nonferrous Met. Soc. China 22 (12), 2863-2870 (2012).
  • [19] Q. Han, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 46 (4), 1603-1614 (2015).
  • [20] W. Khalifa, Y. Tsunekawa, M. Okumiya, J. Mater. Process. Technol. 210 (15), 2178-2187 (2010).
  • [21] X. Liu, Y. Osawa, S. Takamori, T. Mukai, Mater. Lett. 62 (17-18), 2872-2875 (2008).
  • [22] Y. Osawa, S. Takamori, T. Kimura, K. Minagawa, H. Kakisawa, Mater. Trans. JIM 48 (9), 2467-2475, (2007).
  • [23] V. S. Warke, Removal of Hydrogen and Solid Particles from Molten Aluminum Alloys in the Rotating Impeller Degasser: Mathematical Models and Computer Simulations. Master thesis, Worcester Polytechnic Institute, Worcester, MA, 1609, June.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-954f6f51-eb62-465a-9f17-d8afb15bc089
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.