PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of punch profile on deformation behaviour of AA5052 sheet in stretch flanging process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stretch flanging is a type of bending process widely used in automobile and aerospace industries. Forming of the stretch flange is mainly affected by three important parameters: materials of the sheet, the geometry of tools and different process parameters. This work focuses on the effect of punch profile on deformation behavior of AA5052 alloy sheet to form the stretch flange. Six punches of different geometry i.e. cylindrical, two stepped, three stepped, six stepped, conical and hemispherical are used. Results are presented in the form of edge crack in the sheet at edge corner and its propagation towards center, forming load comparison for different punch profile and distribution of radial and circumferential strain in the sheet. It is observed that the punch profile has a considerable effect on the deformation behavior of the sheet. Circumferential strain, radial strain and load requirement to form the flange are found to be minimum in hemispherical punch profile as compared to other punch profiles. Experiments are performed to validate the FE simulation results and results are found in very good agreement in terms of edge crack length. Fractography study shows uniform and large number of small size dimples at the fractured surface for hemispherical and conical punch profile.
Słowa kluczowe
Rocznik
Strony
247--263
Opis fizyczny
Bibliogr. 51 poz., fot., rys., wykr.
Twórcy
  • Academy of Scientific and Innovative Research (AcSIR), Bhopal 462026, India
  • Council of Scientific and Industrial Research (CSIR)-Advanced Materials and Processes Research Institute (AMPRI), Bhopal 462026, India
autor
  • Council of Scientific and Industrial Research (CSIR)-Advanced Materials and Processes Research Institute (AMPRI), Bhopal 462026, India
autor
  • Council of Scientific and Industrial Research (CSIR)-Advanced Materials and Processes Research Institute (AMPRI), Bhopal 462026, India
Bibliografia
  • [1] Chuan-Tao W, Kinzel G, Altan T. Failure and wrinkling criteria and mathematical modeling of shrink and stretch flanging operations in sheet-metal forming. J Mater Process Technol. 1995;53(3):759–80.
  • [2] Stachowicz F. Estimation of hole-flange ability for deep drawing steel sheets. Arch Civil Mech Eng. 2008;8(2):167–72.
  • [3] Chuan-Tao W, Kinzel G, Altan T. Failure and wrinkling criteria and mathematical modeling of shrink and stretch flanging operations in sheet-metal forming. J Mater Process Technol. 1995;3(53):759–80.
  • [4] Wang N-M, Wenner M. An analytical and experimental study of stretch flanging. Int J Mech Sci. 1974;16(2):135–43.
  • [5] Kalpakjian S, Sekar KV, Schmid SR. Manufacturing engineering and technology. London: Pearson; 2014.
  • [6] Groover MP. Fundamentals of modern manufacturing: materials processes, and systems. New York: Wiley; 2007.
  • [7] Dewang Y, Panthi SK, Hora M. Binder force effect on stretch flange forming of aluminum alloy. Mater Manuf Process. 2019;34(13):1516–27.
  • [8] Logan DL. A first course in the finite element method. Boston: Cengage Learning; 2011.
  • [9] Panthi S, Ramakrishnan N, Ahmed M, Singh SS, Goel M. Finite element analysis of sheet metal bending process to predict the springback. Mater Des. 2010;31(2):657–62.
  • [10] Panthi S, Ramakrishnan N, Pathak K, Chouhan J. An analysis of springback in sheet metal bending using finite element method (FEM). J Mater Process Technol. 2007;186(1):120–4.
  • [11] Hu P, Li D, Li Y. Analytical models of stretch and shrink flanging. Int J Mach Tools Manuf. 2003;43(13):1367–73.
  • [12] Sartkulvanich P, Kroenauer B, Golle R, Konieczny A, Altan T. Finite element analysis of the effect of blanked edge quality upon stretch flanging of AHSS. CIRP Ann Manuf Technol. 2010;59(1):279–82.
  • [13] Huang Y-M. An elastoplastic finite element analysis of the sheet metal stretch flanging process. Int J Adv Manuf Technol. 2007;34(7–8):641–8.
  • [14] Vafaeesefat A, Khanahmadlu M. Comparison of the numerical and experimental results of the sheet metal flange forming based on shell-elements types. Int J Precis Eng Manuf. 2011;12(5):857–63.
  • [15] Bahloul R. Optimisation of process parameters in flanging opera-tion in order to minimise stresses and Lemaitre’s damage. Mater Des. 2011;32(1):108–20.
  • [16] Golovashchenko SF. Quality of trimming and its effect on stretch flanging of automotive panels. J Mater Eng Perform. 2008;17(3):316–25.
  • [17] Asnafi N. On stretch and shrink flanging of sheet aluminium by fluid forming. J Mater Process Technol. 1999;96(1):198–214.
  • [18] Kacem A, Krichen A, Manach P-Y, Thuillier S, Yoon J-W. Failure prediction in the hole-flanging process of aluminium alloys. Eng Fract Mech. 2013;99:251–65.
  • [19] Zhang GE, Yao J, Hu SJ, Wu X. Shrink flanging with surface contours. J Manuf Process. 2003;5(2):143–53.
  • [20] Chen L, Chen H, Wang Q, Li Z. Studies on wrinkling and control method in rubber forming using aluminium sheet shrink flanging process. Mater Des. 2015;65:505–10.
  • [21] Wang X, Cao J, Li M. Wrinkling analysis in shrink flanging. J Manuf Sci Eng. 2001;123(3):426–32.
  • [22] Wang X, Cao J. An analytical prediction of flange wrinkling in sheet metal forming. J Manuf Process. 2000;2(2):100–7.
  • [23] Li D, Luo Y, Peng Y, Hu P. The numerical and analytical study on stretch flanging of V-shaped sheet metal. J Mater Process Technol. 2007;189(1):262–7.
  • [24] Lu Y-H, Yeh F-H, Li C-L, Wu M-T. Study of using ANFIS to the prediction in the bore-expanding process. Int J Adv Manuf Technol. 2005;26(5–6):544–51.
  • [25] Voswinckel H, Bambach M, Hirt G. Improving geometrical accuracy for flanging by incremental sheet metal forming. Int J Mater Form. 2015;8(3):391–9.
  • [26] Feng X, Zhongqin L, Shuhui L, Weili X. Study on the influences of geometrical parameters on the formability of stretch curved flanging by numerical simulation. J Mater Process Technol. 2004;145(1):93–8.
  • [27] Kurra S, Regalla SP. Experimental and numerical studies on formability of extra-deep drawing steel in incremental sheet metal forming. J Mater Res Technol. 2014;3(2):158–71.
  • [28] Wen T, Zhang S, Zheng J, Huang Q, Liu Q. Bi-directional die-less incremental flanging of sheet metals using a bar tool with tapered shoulders. J Mater Process Technol. 2016;229:795–803.
  • [29] Abe Y, Mori K-I, Norita K. Gradually contacting punch for improving stretch flangeability of ultra-high strength steel sheets. CIRP Ann Manuf Technol. 2013;62(1):263–6.
  • [30] Centeno G, Martínez-Donaire A, Vallellano C, Martínez-Pal-meth L, Morales D, Suntaxi C, García-Lomas F. Experimental study on the evaluation of necking and fracture strains in sheet metal forming processes. Procedia Eng. 2013;63:650–8.
  • [31] Dewang Y, Hora M, Panthi S. Prediction of crack location and propagation in stretch flanging process of aluminum alloy AA-5052 sheet using FEM simulation. Trans Nonferrous Metals Soc China. 2015;25(7):2308–20.
  • [32] Wang Y-G, Huang G-S, Liu D-K, Lin C, Han T-Z, Jian P, Pan F-S. Influence of blank holder type on drawability of 5182-O aluminum sheet at room temperature. Trans Nonferrous Metals Soc China. 2016;26(5):1251–8.
  • [33] Frącz W, Stachowicz F, Trzepieciński T. Investigations of thick-ness distribution in hole expanding of thin steel sheets. Arch Civil Mech Eng. 2012;12(3):279–83.
  • [34] Centeno G, Silva M, Cristino V, Vallellano C, Martins P. Hole-flanging by incremental sheet forming. Int J Mach Tools Manuf. 2012;59:46–54.
  • [35] Cao T, Lu B, Ou H, Long H, Chen J. Investigation on a new hole-flanging approach by incremental sheet forming through a featured tool. Int J Mach Tools Manuf. 2016;110:1–17.
  • [36] Krawczyk J, Gronostajski Z, Polak S, Jaśkiewicz K, Chorzępa W, Pęcak I. The influence of the punch shape and the cutting method on the limit strain in the hole expansion test. Key Engineering Materials: Trans Tech Publ; 2016. p. 129–37.
  • [37] Sriram S, Chintamani J, Guidelines for stretch flanging advanced high strength steels. In: AIP Conference Proceedings, AIP, 2005, p. 681–686.
  • [38] Syafiq YM, Hamedon Z, Aziz WA, Yusoff AR, Prevention of crack in stretch flanging process using hot stamping technique. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, p. 012071.
  • [39] Simha CH, Grantab R, Worswick MJ. Application of an extended stress-based forming limit curve to predict necking in stretch flange forming. J Manuf Sci Eng. 2008;130(5):051007.
  • [40] Dewang Y, Hora M, Panthi S. Finite element analysis of non-axisymmetric stretch flanging process for prediction of location of failure. Procedia Mater Sci. 2014;5:2054–62.
  • [41] Wang M, Wang S, Li Z. Multi-step forming punch (MFP) for improving stretch-flangeability of advanced high-strength steel. Int J Adv Manuf Technol. 2018;99(5–8):1627–38.
  • [42] Zhang H, Zhang Z, Ren H, Cao J, Chen J. Deformation mechanics and failure mode in stretch and shrink flanging by double-sided incremental forming. Int J Mech Sci. 2018;144:216–22.
  • [43] Y. Bao, Prediction of ductile crack formation in uncracked bodies, Ph.D. thesis, Impact and Crashworthiness Lab, Massachusetts Institute of Technology, Cambridge, MA; 2003.
  • [44] Liu J, Bai Y, Xu C. Evaluation of ductile fracture models in finite element simulation of metal cutting processes. J Manuf Sci Eng. 2014;136(1):011010.
  • [45] Hooputra H, Gese H, Dell H, Werner H. A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int J Crashworthiness. 2004;9(5):449–64.
  • [46] Kiran R, Khandelwal K. Gurson model parameters for ductile fracture simulation in ASTM A992 steels. Fatigue Fract Eng Mater Struct. 2014;37(2):171–83.
  • [47] Kut S. A simple method to determine ductile fracture strain in a tensile test of plane specimen’s. Metalurgija. 2010;49(4):295–9.
  • [48] A. Documentation, Getting started with Abaqus interactive edition, Version, 2013.
  • [49] Davis JR. Tensile testing. New York: ASM International; 2004.
  • [50] Ahmed M, Kumar DR, Nabi M. Enhancement of formability of AA5052 alloy sheets by electrohydraulic forming process. J Mater Eng Perform. 2017;26(1):439–52.
  • [51] Mugendiran V, Gnanavelbabu A, Ramadoss R, Tensile behav-iour of Al5052 alloy sheets annealed at different temperatures, Advanced Materials Research, Trans Tech Publ, 2014, p. 431–435.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95493040-9ba8-4559-a8b1-423e6d3b5897
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.