Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Sterowanie modelem wewnętrznym za pomocą sztucznych sieci neuronowych dla liniowych systemów o minimalnej fazie
Języki publikacji
Abstrakty
In this paper, we are interested in the internal model control using neural networks in the case of linear minimum phase systems. We propose, to use the neural internal model control to solve the inversion problem of a model M(z) in order to design the IMC controller. An example application is presented and the implementation of the proposed approach is discussed.
W niniejszym artykule interesuje nas sterowanie modelem wewnętrznym za pomocą sieci neuronowych w przypadku liniowych układów o minimalnej fazie. Proponujemy wykorzystanie neuronowego sterowania modelem wewnętrznym do rozwiązania problemu inwersji modelu M(z) w celu zaprojektowania sterownika IMC. Przedstawiono przykładową aplikację oraz omówiono wdrożenie proponowanego podejścia.
Wydawca
Czasopismo
Rocznik
Tom
Strony
45--48
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- University of Tunis El Manar Tunis, Tunisia. Automatic Research Laboratory, LA.R. A, National Engineering School of Tunis
autor
- University of Tunis El Manar Tunis, Tunisia. Automatic Research Laboratory, LA.R. A, National Engineering School of Tunis
autor
- University of Tunis El Manar Tunis, Tunisia. Automatic Research Laboratory, LA.R. A, National Engineering School of Tunis
Bibliografia
- [1] Rivals I., Personnaz L. Nonlinear internal model control using neural networks: Application to processes with delay and design issues, IEEE transactions on neural networks, 11 (2000), no.1, 80-90.
- [2] Rivals I., Personnaz, L. Internal model control using neural networks, IEEE International Symposium on Industrial Electronics, Poland, (1996), 109-114.
- [3] Bassil Y. Neural network model for path-planning of robotic rover systems, International Journal of Science and Technology, 2(2012), no. 2,1-6.
- [4] Wang Q. G., Zhang Y., Zhang, Y. A modiffied internal model control scheme with simplified design and implementation. Chemical Engineering Communications, 184(2001), no. 1, 35- 47.
- [5] Bejaoui I., Saidi I., Soudani D., New Internal Model Controller design for discrete over-actuated multivariable system, 4th International Conference on Control Engineering & Information Technology (CEIT), Hamamet, 2016.
- [6] Dimitris C. P., Ungar L.H. Direct and indirect model based control using artificial neural networks, Industrial & Engineering Chemistry Research, 30(1991), no. 12, 2564–2573.
- [7] Yildirim S. A proposed neural internal model control for robot manipulators, Journal of Scientific and Industrial Research, 65(2006), 713–720.
- [8] Saidi I., Touati N., Nonlinear predictive control for trajectory tracking of underactuated mechanical systems, Przegląd Elektrotechniczny, 97 (2021), nr. 6, 30-33.
- [9] Saidi I., N. Touati N., Sliding mode control to stabilization of nonlinear Underactuated mechanical systems, Przegląd Elektrotechniczny, 97 (2021), nr. 7, 106-109.
- [10] Bejaoui I., Saidi I., Xibilia M. G., Soudani D., Internal model control of discrete non-minimum phase over-Actuated systems with multiple time delays and uncertain parameters, Journal of Engineering Science and Technology Review,12(2019), no. 2, 111-118.
- [11] Garcia C. G., Morari M., Internal model control. 1.a unifying review and some results, Industrial Engineering Chemistry Process Design and Development, 2 (1982), 403–411.
- [12] Saidi I., N. Touati, Dhahri A., Soudani D., A comparative study on existing and new methods to design internal model controllers for non-square systems, Transactions of the Institute of Measurement and Control, 41 (2019), no.13, 3637- 3650.
- [13] Dhahri A., Saidi I., Soudani D., Internal model control for multivariable over-actuated systems with multiple time delay, 4th International Conference on control Engineering & Information Technology, Tunisia, (2016), 623-626.
- [14] Touati N., Saidi I., Dhahri A., Soudani D., Internal multimodel control for nonlinear overactuated systems, Arabian Journal for Science and Engineering, 44(2019), no.3, 2369-2377.
- [15] Touati N., Saidi I., Internal model control for underactuated systems based on novel virtual inputs method, Przegląd Elektrotechniczny, 2021, 2021(9), 95-99.
- [16] Bloch G., Thomas P ., Theilliol D. Accomodation to outliers in identification of non-linear SISO systems with neural networks, Neurocomputing, 14(1997), 85-99.
- [17] Nelles O. Nonlinear system identification: from classical approaches to neural networks and fuzzy models.Applied Therapeutics, 6(2001), no.7, 21–717.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9547126f-ed82-4f98-a3b2-a06351bd7b95