PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of powder sintering using a discrete element model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents numerical simulation of powder sintering. The numerical model introduced in this work employs the discrete element method which assumes that material can be modelled by a large assembly of discrete elements (particles) of spherical shape interacting among one another. Modelling of sintering requires introduction of the cohesive interaction among particles representing inter-particle sintering forces. Numerical studies of sintering have been combined with experimental studies which provided data for calibration and validation of the model. In the laboratory tests evolution of microstructure and density during sintering have been studied. Comparison of numerical and experimental results shows a good performance of the numerical model developed.
Rocznik
Strony
157--179
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warsaw, Poland
  • Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warsaw, Poland
Bibliografia
  • 1. Abouaf M., Chenot J.L., Raisson G., Bauduin P. (1988), Finite element simulation of hot isostatic pressing of metal powders, International Journal for Numerical Methods in Engineering, 25, 191–212.
  • 2. Coble R.L. (1958), Initial Sintering of Alumina and Hematite, J. Amer. Ceramic Soc., 41, 55-62.
  • 3. Cocks A.C.F. (1989), Inelastic deformation of porous materials, Journal of the Mechanics and Physics of Solids, 37 (6), 693–715.
  • 4. De Jonghe L.C., Rahaman M.N. (1988), Sintering Stress of Homogeneous and Heterogeneous Powder Compacts, Acta Metall., 36, 223-229.
  • 5. Duva J.M., Crow P.D. (1992), The densification of powders by power-law creep during hot isostatic pressing, Acta Metallurgica et Materialia, 40, 31–35.
  • 6. Henrich B. (2007), (PhD thesis) Partikelbasierte Simulations- methoden in Pulvertechnologie und Nanofluidik, Albert-Ludwigs-Universität Freiburg im Breisgau.
  • 7. Henrich B., Wonisch A., Kraft T., Moseler M., Riedel H. (2007), Simulations of the influence of rearrangement during sintering, Acta Materialia, 55, 753–762.
  • 8. Hosford W.F. (2006), Material Science, Cambridge University Press.
  • 9. Huilong Z., Averback R.S. (1996), Sintering processes of two nanoparticles: a study by molecular-dynamics simulations, Phil. Mag. Let., 73(1), 27–33.
  • 10. Johnson D.L. (1969), New Method of Obtaining Volume, Grain Boundary, and Surface Diffusion Coefficients from Sintering Data, Journal of Applied Physics, 40, 192-200.
  • 11. Kadau K., Entel P., Lomdahl P.S. (2002), Molecular-dynamics study of martensitic transformations in sintered Fe–Ni nanoparticles, Computer Physics Communications, 147, 126–129.
  • 12. Kadushnikov R.M., Skorokhod V.V., Kamenin I.G., Alievskii V.M., Yu Nurkanov E., Alievskii D.M. (2001), Theory and technology of sintering, heat, and chemical heat-treatment processes computer simulation of spherical particle sintering. Powder Metallurgy and Metal Ceramics, 40(3-4), 154–163.
  • 13. Luding S., Manetsberger K., Müllers J. (2005), A discrete model for long time sintering, Journal of Mechanics and Physics of Solids, 53, 455–491
  • 14. Martin C.L., Schneider L.C.R., Olmos L., Bouvard D. (2006), Discrete element modeling of metallic powder sintering, Scripta Materialia, 55, 425–428.
  • 15. Matsubara H. (1999), Computer simulations for the design of microstructural developments in ceramics, Computational Materials Science, 14, 125–128.
  • 16. Olmos L., Martin C.L., Bouvard D. (2009), Sintering of mixtures of powders: experiments and modelling, Powder Technology, 190, 134–140.
  • 17. Parhami F., McMeeking R.M. (1998), A network model for initial stage sintering,Mechanics of Materials, 27, 111-124.
  • 18. Ponte Castañeda P. (1991), The effective mechanical properties of nonlinear isotropic composites, Journal of the Mechanics and Physics of Solids, 39, 45–71.
  • 19. Rojek J., Pietrzak K., Chmielewski M., Kaliński D., Nosewicz S. (2011), Discrete Element Simulation of Powder Sintering, Computer Methods in Materials Science, 11, 68-73.
  • 20. Sofronis P., McMeeking R.M. (1992), Creep of power-law material containing spherical voids, ASME Journal of Applied Mechanics, 59, S88–S95.
  • 21. Wonisch A., Kraft T., Moseler M., Riedel H. (2009), Effect of different particle size distributions on solid-state sintering: A microscopic simulation approach, J. Am. Ceram. Soc., 92, 1428–1434.
  • 22. Zachariah M.R., Carrier M.J. (1999), Molecular dynamics computation of gas-phase nanoparticle sintering: a comparison with phenomenological models, Journal of Aerosol Science, 30, 1139–1151.
  • 23. Zeng P., Zajac S., Clapp P.C., Rifkin J.A. (1998), Nanoparticle sintering simulations, Materials Science and Engineering, A252, 301–306.
  • 24. Zhu H., Averback R.S. (1995), Molecular dynamics simulations of densification process in nanocrystalline materials, Materials Science and Engineering A, A204(1-2), 96–100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9547040b-872b-41ad-ab7d-b92cac54347b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.