PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi Arabia

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to conduct the first comprehensive evaluation of carbon stock in the sediments of Avicennia marina (black mangrove) and Rhizophora mucronata (red mangrove) along the coastline of an arid region (Farasan Islands, Saudi Arabia). Such information is necessary for the development of any management plan for the mangrove ecosystems along the Saudi Red Sea islands and provide a rationale for the restoration of mangrove forests in Saudi Arabia. A. marina and R. mucronata locations showed significant (P < 0.001) differences in sediment bulk density (SBD) and sediment organic carbon (SOC) concentration with higher mean values for both in the sediments of A. marina. Considering the whole depth of sediment sampled (0-50 cm), the highest value of SOC stock (12.3 kg C m−2) was recorded at A. marina locations and the lowest (10.8 kg C m−2) at R. mucronata locations. Thus, the SOC stock of A. marina was greater than that of R. mucronata by 114.3%. Consequently, considering the rate of carbon sequestration and the area of mangrove forests (216.4 ha), the total carbon sequestration potential of mangroves in the Farasan Islands ranged between 10.3 Mg C yr−1 and 11.8 Mg C yr−1 for R. mucronata and A. marina locations, respectively. Thus, it is necessary to protect and restore these ecosystems for the sequestration of carbon and for their other valuable ecosystem services.
Czasopismo
Rocznik
Strony
200--213
Opis fizyczny
Bibliogr. 120 poz., mapa, tab., wykr.
Twórcy
  • Department of Biology, College of Science, King Khalid University, Saudi Arabia
  • Department of Botany, Faculty of Science, Kafr El-Sheikh University, Egypt
  • Department of Civil Engineering, College of Engineering, King Khalid University, Saudi Arabia
  • Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus, Tunisia
autor
  • Department of Civil Engineering, College of Engineering, King Khalid University, Saudi Arabia
  • Higher Institute of Transport and Logistics of Sousse, University of Sousse, Tunisia
  • Department of Chemical Engineering, College of Engineering, King Khalid University, Saudi Arabia
  • Department of Geography, College of Humanities, King Khalid University, Saudi Arabia
  • Prince Sultan Bin Abdul-Aziz Center for Environment and Tourism Research and Studies, King Khalid University, Saudi Arabia
  • Department of Geography, Faculty of Arts, Assiut University, Assiut, Egypt
autor
  • Department of Civil Engineering, College of Engineering, King Khalid University, Saudi Arabia
  • Higher Institute of Transport and Logistics of Sousse, University of Sousse, Tunisia
Bibliografia
  • [1] Abu-Zied, R. H., Bantan, R. A., Basaham, A. S., El Mamoney, M. H., Al-Washmi, H. A., 2011. Composition, distribution, and taphonomy of nearshore benthic foraminifera of the Farasan Islands, Southern Red Sea, Saudi Arabia. J. Foraminifer Res. 41 (4), 349-362, https://doi.org/10.2113/gsjfr.41.4.349.
  • [2] Adame, M. F., Kauffman, J. B., Boone, J., Medina, I., Gamboa, J. N., Torres, O., Caamal, J. P., Reza, M., Herrera-Silveira, J. A., 2013. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLOS One 8 (2), e56569, https://doi.org/10.1371/journal.pone.0056569.
  • [3] Al Mutairi, K., El-Bana, M., Mansor, M., Al-Rowaily, S., Mansor, A., 2012. Floristic diversity, composition, and environmental correlates on the arid, coralline islands of the Farasan Archipelago, Red Sea, Saudi Arabia. Arid Land Res. Manage. 26 (2), 137-150, https://doi.org/10.1080/15324982.2012.656179.
  • [4] Alfarhan, A. H., Al-Turki, T. A., Thomas, J., Basahy, R. A., 2002. Annotated list to the flora of Farasan Archipelago, Southern Red Sea, Saudi Arabia. Taeckholmia 22 (1), 1-33.
  • [5] Allison, M. A., Khan, S. R., Goodbred Jr., S. L., Kuehl, S. A., 2003. Stratigraphic evolution of the late Holocene Ganges-Brahmaputra lower delta plain. Sediment Geol. 155 (3-4), 317-342, https://doi.org/10.1016/S0037-0738(02)00185-9.
  • [6] Almahasheer, H., Duarte, C., Irigoien, X., 2016a. Nutrient limitation in central Red Sea mangroves. Front. Mar. Sci. 3, art. no. 271, https://doi.org/10.3389/fmars.2016.00271.
  • [7] Almahasheer, H., Duarte, C., Irigoien, X., 2016b. Phenology and growth dynamics of Avicennia marina in the central Red Sea. Sci. Rep. 6 (1), art. no. 37785, https://doi.org/10.1038/srep37785.
  • [8] Almahasheer, H., Serrano, O., Duarte, C., Arias-Ortiz, A., Masque, P., Irigoien, X., 2017. Low carbon sink capacity of Red Sea mangroves. Sci. Rep. 7 (1), art. no. 9700, https://doi.org/10.1038/s41598-017-10424-9.
  • [9] Alongi, D. M., 1998. Coastal Ecosystem Processes. CRC Press, Florida, 448 pp.
  • [10] Alongi, D. M., 2002. Present state and future of the world’s mangrove forests. Environ. Conserv. 29 (3), 331-349, https://doi.org/10.1017/S0376892902000231.
  • [11] Alongi, D. M., 2007. The contribution of mangrove ecosystems to global carbon cycling and greenhouse gas emissions. In: Tateda, Y., Upstill-Goddard, R., Goreau, T., Alongi, D., Nose, A., Kristensen, E., Wattayakorn, G. (Eds.), Greenhouse Gas and Carbon Balances in Mangrove Coastal Ecosystems. Maruzen, Tokyo, 1-10.
  • [12] Alongi, D. M., 2008. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76 (1), 1-13, https://doi.org/10.1016/j.ecss.2007.08.024.
  • [13] Alongi, D. M., 2012. Carbon sequestration in mangrove forests. Carbon Manage. 3 (3), 313-322, https://doi.org/10.4155/cmt.12.20.
  • [14] Alongi, D. M., 2014. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 6 (1), 195-219, https://doi.org/10.1146/annurev-marine-010213-135020.
  • [15] Alongi, D. M., Clough, B. F., Dixon, P., Tirendi, F., 2003. Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 17 (1), 51-60, https://doi.org/10.1007/s00468-002-0206-2.
  • [16] Alongi, D. M., Tirendi, F., Clough, B., 2000. Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquat. Bot. 68 (2), 97-122, https://doi.org/10.1016/S0304-3770(00)00110-8.
  • [17] Alongi, D. M., Wattayakorn, G., Pfitzner, J., Tirendi, F., Zagorskis, I., Brunskill, G., Davidson, A., Clough, B., 2001. Organic carbon accumulation and metabolic pathways in sediments of mangrowe forests in southern Thailand. Mar. Geol. 179 (1-2), 85-103, https://doi.org/10.1016/S0025-3227(01)00195-5.
  • [18] Alwelaie, A. N., Chaudary, S. A., Alwetaid, Y., 1993. Vegetation of some Red Sea islands of the Kingdom of Saudi Arabia. J. Arid Environ. 24 (3), 287-296, https://doi.org/10.1006/jare.1993.1025.
  • [19] Arshad, M., Alrumman, S., Eid, E. M., 2018. Evaluation of carbon sequestration in the sediment of polluted and non-polluted locations of mangroves. Fund. Appl. Limnol. 192 (1), 53-64, https://doi.org/10.1127/fal/2018/1127.
  • [20] Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., Lovelock, C. E., 2017. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523-528, https://doi.org/10.1038/nclimate3326.
  • [21] Bantan, R. A., 1999. Geology and Sedimentary Environments of Farasan Bank (Saudi Arabia) Southern Red Sea: A Combined Remote Sensing and Field Study. University of London, London, 296 pp.
  • [22] Barreto, M. B., Lo Mónaco, S., Díaz, R., Barreto-Pittol, E., López, L., Peralba, M. C. R., 2016. Soil organic carbon of mangrove forests ( Rhizophora and Avicennia ) of the Venezuelan Caribbean coast. Org. Geochem. 100 (1), 51-61, https://doi.org/10.1016/j.orggeochem.2016.08.002.
  • [23] Bianchi, T. S., Allison, M. A., Zhao, J., Li, X., Comeaux, R. S., Feagin, R. A., Kulawardhana, R. W., 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico: Linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast. Shelf Sci. 119 (1), 7-16, https://doi.org/10.1016/j.ecss.2012.12.007.
  • [24] Bouillon, S., Borges, A., Casteneda-Moya, E., Diele, K., Dittmar, T., 2008. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochem. Cy. 22 (2), GB2013, https://doi.org/10.1029/2007GB003052.
  • [25] Bouillon, S., Dahdouh-Guebas, F., Rao, A. V. V. S., Koedam, N., Dehairs, F., 2003. Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495 (1-3), art. no. 3339, https://doi.org/10.1023/A:1025411506526.
  • [26] Bunting, P., Rosenqvist, A., Lucas, R. M., Rebelo, L.-M., Hilarides, L., Thomas, N., Hardy, A., Itoh, T., Shimada, M., Finlayson, C. M., 2018. The global mangrove watch-A new 2010 global baseline of mangrove extent. Remote Sens. 10 (1), art. no. 1669, https://doi.org/10.3390/rs10101669.
  • [27] Castillo, J. A. A., Apan, A. A., Maraseni, T. N., Salmo III, S. G., 2017. Soil C quantities of mangrove forests, their competing land uses, and their spatial distribution in the coast of Honda Bay, Philippines. Geoderma 293 (1), 82-90, https://doi.org/10.1016/j.geoderma.2017.01.025.
  • [28] Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., van den Belt, M., 1997. The value of the world’s ecosystem services and natural capital. Nature 387, 253-260, https://doi.org/10.1038/387253a0.
  • [29] Dabbagh, A., Hölzl, H., Schnier, H., 1984. Farasan Islands. In: Tado, A., Zötl, J. G. (Eds.), Quaternary Periods in Saudi Arabia, 2. Springer-Verlag, Wienn & New York, 212-220.
  • [30] De Deyn, G., Cornelissen, J. H. C., Bardgett, R. D., 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11 (5), 516-531, https://doi.org/10.1111/j.1461208;0248.2008.01164.x.
  • [31] Donato, D., Kauffman, J., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., 2011. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4 (5), 293-297, https://doi.org/10.1038/ngeo1123.
  • [32] Donato, D. C., Kauffman, J. B., Mackenzie, R. A., Ainsworth, A., Pfleeger, A. Z., 2012. Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. J. Environ. Manage. 97 (1), 89-96, https://doi.org/10.1016/j.jenvman.2011.12.004.
  • [33] Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., Field, C. D., Koedam, N., Lee, S. Y., Marchand, C., Nordhaus, I., Dahdouh-Guebas, F., 2007. A world without mangroves? Science 317, 41-42, https://doi.org/10.1126/science.317.5834.41b.
  • [34] Dung, L. V., Tue, N. T., Nhuan, M. T., Omori, K., 2016. Carbon storage in a restored mangrove forest in Can Gio Mangrove Forest Park, Mekong Delta, Vietnam. Forest Ecol. Manage. 380 (1), 31-40, https://doi.org/10.1016/j.foreco.2016.08.032.
  • [35] Eid, E. M., Arshad, M., Shaltout, K. H., El-Sheikh, M. A., Alfarhan, A. H., Picó, Y., Barcelo, D., 2019. Effect of the conversion of mangroves into shrimp farms on carbon stock in the sediment along the southern Red Sea coast, Saudi Arabia. Environ. Res. 176, 108536, https://doi.org/10.1016/j.envres.2019.108536.
  • [36] Eid, E. M., El-Bebany, A. F., Alrumman, S. A., 2016. Distribution of soil organic carbon in the mangrove forests along the southern Saudi Arabian Red Sea coast. Rend. Fis. Acc. Lincei. 27 (4), 629-637, https://doi.org/10.1007/s12210-016-0542-6.
  • [37] Eid, E. M., Shaltout, K. H., 2016. Distribution of soil organic carbon in the mangrove Avicennia marina (Forssk.) Vierh. along the Egyptian Red Sea coast. Reg. Stud. Mar. Sci. 3 (1), 76-82, https://doi.org/10.1016/j.rsma.2015.05.006.
  • [38] El-Demerdash, M. A., 1996. The vegetation of the Farasān Islands, Red Sea, Saudi Arabia. J. Veg. Sci. 7 (1), 81-88, https://doi.org/10.2307/3236419.
  • [39] Feller, I. C., McKee, K. L., Whigham, D. F., O’Neill, J. P., 2003. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62 (2), 145-175, https://doi.org/10.1023/A:1021166010892.
  • [40] Ferreira, T. O., Otero, X. L., de Souza Junior, V. S., Vidal-Torrado, P., Macías, F., Firme, L. P., 2010. Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo). J. Soils Sediments 10 (6), 995-1006, https://doi.org/10.1007/s11368-010-0224-4.
  • [41] Fujimoto, K., Imaya, A., Tabuchi, R., Kuramoto, S., Utsugi, H., Murofushi, T., 1999. Belowground carbon storage of Micronesian mangrove forests. Ecol. Res. 14 (4), 409-413, https://doi.org/10.1046/j.1440-1703.1999.00313.x.
  • [42] Furukawa, K., Wolanski, E., Mueller, H., 1997. Currents and sediment transport in mangrove forests. Estuar. Coast. Shelf Sci. 52 (3), 505-514, https://doi.org/10.1006/ecss.1996.0120.
  • [43] Gao, Y., Zhou, J., Wang, L., Guo, J., Feng, J., Wu, H., Lin, G., 2019. Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China. Global Ecol. Conserv. 17, e00575, https://doi.org/10.1016/j.gecco.2019.e00575.
  • [44] Girmay, G., Singh, B. R., 2012. Changes in soil organic carbon stocks and soil quality: land-use system effects in northern Ethiopia. Acta Agric. Scand., Sect. B - Soil Plant Sci. 62 (6), 519-530, https://doi.org/10.1080/09064710.2012.663786.
  • [45] Gleason, S. M., Ewel, K. C., 2002. Organic matter dynamics on the forest floor of a Micronesian mangrove forest: An investigation of species composition shifts. Biotropica 34 (2), 190-198, https://doi.org/10.1111/j.1744-7429.2002.tb00530.x.
  • [46] Hanson, B. J., Cummins, K. W., Barnes, J. R., Carter, M. V., 1984. Leaf litter processing in aquatic systems: A two variable model. Hydrobiologia 111, 21-29, https://doi.org/10.1007/BF00007376.
  • [47] Huang, L. Y., 2015. Distribution Characteristics and Influential Factors of Soil Organic Carbon in Mangrove Wetlands in Guangdong Province M.Sc. thesis. Guangxi Teachers Education University, Guangxi.
  • [48] IPCC (Intergovernmental Panel on Climate Change), 2007. The Fourth Assessment Report Climate Change 2007. IPCC, Geneva.
  • [49] Jacotot, A., Marchand, C., Rosenheim, B. E., Domack, E. W., Allenbach, M., 2018. Mangrove sediment carbon stocks along an elevation gradient: Influence of the late Holocene marine regression (New Caledonia). Mar. Geol. 404 (1), 60-70, https://doi.org/10.1016/j.margeo.2018.07.005.
  • [50] Jardine, S. L., Siikamäki, J. V., 2014. A global predictive model of carbon in mangrove soils. Environ. Res. Lett. 9 (10), 104013, https://doi.org/10.1088/1748-9326/9/10/104013.
  • [51] Jennerjahn, T. C., Ittekot, V., 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89 (1), 23-30, https://doi.org/10.1007/s00114-001-0283-x.
  • [52] Johnston, C. A., Groffman, P., Breshears, D. D., Cardon, Z. G., Currie, W., Emanuela, W., Gaudinski, J., Jackson, R. B., Lajtha, K., Nadelhoffer, K., Nelson, D., Post, W. M., Retallack, G., Wielopolski, L., 2004. Carbon cycling in soil. Front. Ecol. Environ. 2 (10), 522-528, https://doi.org/10.1890/1540-9295(2004)002[0522:CCIS]2.0.CO;2.
  • [53] Jones, J. B., 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, Florida.
  • [54] Jones, T., Ratsimba, H., Ravaoarinorotsihoarana, L., Cripps, G., Bey, A., 2014. Ecological variability and carbon stock estimates of mangrove ecosystems in northwestern Madagascar. Forests 5 (1), 177-205, https://doi.org/10.3390/f5010177.
  • [55] Jonsson, M. N., Hedman, A. M., 2019. Carbon stock assessment of mangrove ecosystems in Batticaloa Lagoon, Sri Lanka, with different degree of human disturbances. Singapore J. Trop. Geo. 40 (2), 199-218, https://doi.org/10.1111/sjtg.12267.
  • [56] Kathiresan, K., Anburaj, R., Gomathi, V., Saravanakumar, K., 2013. Carbon sequestration potential of Rhizophora mucronata and Avicennia marina as influenced by age, season, growth and sediment characteristics in southeast coast of India. J. Coast Conserv. 17 (3), 397-408, https://doi.org/10.1007/s11852-013-0236-5.
  • [57] Kauffman, J. B., Donato, D. C., 2012. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests. Working paper 86. CIFOR, Bogor, 44 pp., https://doi.org/10.17528/cifor/003749.
  • [58] Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A., Donato, D. C., 2011. Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31 (2), 343-352, https://doi.org/10.1007/s13157-011-0148-9.
  • [59] Kauffman, J. B., Heider, C., Norfolk, J., Payton, F., 2014. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24 (3), 518-527, https://doi.org/10.1890/13-0640.1.
  • [60] Kauffman, J. B., Trejo, H. H., Garcia, M. d. C. J., Heider, C., Contreras, W. M., 2016. Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centle, Mexico. Wetlands Ecol. Manage. 24 (2), 203-216, https://doi.org/10.1007/s11273-015-9453-z.
  • [61] Khalil, H. M., 2012. Pliocene-Pleistocene stratigraphy and macrofauna of the Farasan Islands, South East Red Sea, Saudi Arabia. Arab. J. Geosci. 5 (6), 1223-1245, https://doi.org/10.1007/s12517-011-0300-0.
  • [62] Khan, M. A., Kumar, A., Muqtadir, A., 2010. Distribution of mangroves along the Red Sea coast of the Arabian Peninsula: Part 2. The southern coast of western Saudi Arabia. Earth Sci. India 3 (3), 154-162.
  • [63] Khan, M. N. I., Suwa, R., Hagihara, A., 2007. Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil-vegetation system. Wetlands Ecol. Manage. 15 (2), 141-153, https://doi.org/10.1007/s11273-006-9020-8.
  • [64] Krauss, K. W., Allen, J. A., Cahoon, D. R., 2003. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar. Coast. Shelf Sci. 56 (2), 251-259, https://doi.org/10.1016/S0272-7714(02)00184-1.
  • [65] Kristensen, E., Bouillon, S., Dittmar, T., Marchand, C., 2008. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89 (2), 201-219, https://doi.org/10.1016/j.aquabot.2007.12.005.
  • [66] Kusumaningtyas, M. A., Hutahaean, A. A., Fischer, H. W., Pérez-Mayo, M., Ransby, D., Jennerjahn, T. C., 2019. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuar. Coast. Shelf Sci. 218, 310-323, https://doi.org/10.1016/j.ecss.2018.12.007.
  • [67] Lacerda, L., Ittekkot, V., Patchineelam, S., 1995. Biogeochemistry of mangrove soil organic matter: A comparison between Rhizophora and Avicennia soils in south-eastern Brazil. Estuar. Coast. Shelf S. 40 (6), 713-720, https://doi.org/10.1006/ecss.1995.0048.
  • [68] Lovelock, C. E., Feller, I. C., Reef, R., Ruess, R. W., 2014. Variable effects of nutrient enrichment on soil respiration in mangrove forests. Plant Soil 379 (1-2), 135-148, https://doi.org/10.1007/s11104-014-2036-6.
  • [69] Mackenzie, R. A., Foulk, P. B., Klump, J. V., Weckerly, K., Purbospito, J., Murdiyarso, D., Donato, D. C., Nam, V. N., 2016. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: A tale of two mangroves. Wetlands Ecol. Manage. 24 (2), 245-261, https://doi.org/10.1007/s11273-016-9481-3.
  • [70] Mandura, A. S., Khafaji, A. K., Saifullah, S. M., 1988. Ecology of a mangrove stand of a central Red Sea coast area: Ras Hatiba (Saudi Arabia). Proc. Saudi Biol. Soc. 11 (1), 85-112.
  • [71] Matsui, N., 1998. Estimated stocks of organic carbon in mangrove roots and sediments in Hinchinbrook Channel, Australia. Mangroves Salt Marshes 2 (4), 199-204, https://doi.org/10.1023/A:1009959909208.
  • [72] Meersmans, J., De Ridder, F., Canters, F., De Baets, S., Van Molle, M., 2008. A multiple regression approach to assess the spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders Belgium). Geoderma 143 (1-2), 1-13, https://doi.org/10.1016/j.geoderma.2007.08.025.
  • [73] Middleton, B. A., McKee, K. L., 2001. Degradation of mangrove tissues and implications for peat formation in Belizean Island forests. J. Ecol. 89 (5), 818-828, https://doi.org/10.1046/j.0022-0477.2001.00602.x.
  • [74] Morcos, S. A., 1970. Physical and chemical oceanography of the Red Sea. Oceanogr. Mar. Biol. Ann. Rev. 8, 73-202.
  • [75] Nóbrega, G. N., Ferreira, T. O., Artur, A. G., Mendonça, E. S., Leão, R. A., Teixeira, A. S., Otero, X. L., 2015. Evaluation of methods for quantifying organic carbon in mangrove soils from semi-arid region. J. Soil. Sediment. 15 (2), 282-291, https://doi.org/10.1007/s11368-014-1019-9.
  • [76] Nóbrega, G. N., Ferreira, T. O., Neto, M. S., Mendonça, E. S., Romero, R. E., Otero, X. L., 2019. The importance of blue carbon soil stocks in tropical semiarid mangroves: A case study in Northeastern Brazil. Environ. Earth Sci. 78 (12), art. no. 369, https://doi.org/10.1007/s12665-019-8368-z.
  • [77] Nordhaus, I., Wolff, M., Diele, K., 2006. Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Estuar. Coast. Shelf Sci. 67 (1-2), 239-250, https://doi.org/10.1016/j.ecss.2005.11.022.
  • [78] Ochoa-Gómez, J. G., Lluch-Cota, S. E., Rivera-Monroy, V. H., Lluch-Cota, D. B., Troyo-Diéguez, E., Oechel, W., Serviere-Zaragoza, E., 2019. Mangrove wetland productivity and carbon stocks in an arid zone of the Gulf of California (La Paz Bay, Mexico). Forest Ecol. Manage. 442, 135-147, https://doi.org/10.1016/j.foreco.2019.03.059.
  • [79] Otero, X. L., Méndez, A., Nóbrega, G. N., Ferreira, T. O., Santiso-Taboada, M. J., Meléndez, W., Macías, F., 2017. High fragility of the soil organic C pools in mangrove forests. Mar. Pollut. Bull. 119 (1), 460-464, https://doi.org/10.1016/j.marpolbul.2017.03.074.
  • [80] Perera, K. A. R. S., Amarasinghe, M. D., 2019. Carbon sequestration capacity of mangrove soils in micro tidal estuaries and lagoons: A case study from Sri Lanka. Geoderma 347, 80-89, https://doi.org/10.1016/j.geoderma.2019.03.041.
  • [81] Pérez, A., Machado, W., Gutierrez, D., Stokes, D., Sanders, L., Smoak, J. M., Santos, I., Sanders, C. J., 2017. Changes in organic carbon accumulation driven by mangrove expansion and deforestation in a New Zealand estuary. Estuar. Coast. Shelf Sci. 192, 108-116, https://doi.org/10.1016/j.ecss.2017.05.009.
  • [82] PERSGA (the Regional Organization for the Conservation of the Environment of the Red Sea and Gulf of Aden), 2004. Status of Mangroves in the Red Sea and Gulf of Aden. PERSGA Technical Series no. 11. PERSGA, Jeddah.
  • [83] Phang, V. X. H., Chou, L. M., Friess, D. A., 2015. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf. Proc. Land. 40 (10), 1387-1400, https://doi.org/10.1002/esp.3745.
  • [84] Pravin, R., Dodha, V., Vidya, D., Manab, C., Saroj, M., 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 3 (2), 1-8.
  • [85] Pribyl, D. W., 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma 156 (3-4), 75-83, https://doi.org/10.1016/j.geoderma.2010.02.003.
  • [86] Price, A. R., Medley, P. A., McDowall, R. J., Dawson-Shepherd, A. R., Hogarth, P. J., Ormond, R. F., 1987. Aspects of mangal ecology along the Red Sea coast of Saudi Arabia. J. Nat. Hist. 21 (2), 449-464, https://doi.org/10.1080/00222938700771121.
  • [87] Radabaugh, K. R., Moyer, R. P., Chappel, A. R., Powell, C. E., Bociu, I., Clark, B. C., Smoak, J. M., 2018. Coastal blue carbon assessment of mangroves, salt marshes, and salt barrens in Tempa Bay, Florida, USA. Estuar. Coast. 41 (5), 1496-1510, https://doi.org/10.1007/s12237-017-0362-7.
  • [88] Ray, R., Ganguly, D., Chowdhury, C., Dey, M., Das, S., Dutta, M., Mandal, S., Majumder, N., De, T., Mukhopadhyay, S., Jana, T., 2011. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environ. 45 (28), 5016-5024, https://doi.org/10.1016/j.atmosenv.2011.04.074.
  • [89] Ren, H., Chen, H., Li, Z., Han, W., 2010. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant Soil 327 (1-2), 279-291, https://doi.org/10.1007/s11104-009-0053-7.
  • [90] Rumpel, C., Amiraslani, F., Koutika, L.-S., Smith, P., Whitehead, D., Wollenberg, E., 2018. Put more carbon in soils to meet Paris climate pledges. Nature 564 (7734), 32-34, https://doi.org/10.1038/d41586-018-07587-4.
  • [91] Saderne, V., Cusack, M., Almahasheer, H., Serrano, O., Masqué, P., Arias-Ortiz, A., Krishnakumar, P. K., Rabaoui, L., Qurban, M. A., Duarte, C. M., 2018. Accumulation of carbonates contributes to coastal vegetated ecosystems keeping pace with sea level rise in an arid region (Arabian Peninsula). J. Geophys. Res. Biogeo. 123, 1498-1510, https://doi.org/10.1029/2017jg004288.
  • [92] Sahu, S. K., Kathiresan, K., 2019. The age and species composition of mangroves forest directly influence the net primary productivity and carbon sequestration potential. Biocatalysis Agr. Biotechnol. 20, 101235, https://doi.org/10.1016/j.bcab.2019.101235.
  • [93] Saifullah, S. M., 1994. Mangrove ecosystem of Saudi Arabian Red Sea coast - An overview. J. K. A. U.: Mar. Sci. 7, 263-270.
  • [94] Saintilan, N., Rogers, K., Mazumder, D., Woodroffe, C., 2013. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar. Coast. Shelf Sci. 128, 84-92, https://doi.org/10.1016/j.ecss.2013.05.010.
  • [95] Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adame, M., Benson, L., Bukoski, J., Carnell, P., Cifuentes-Jara, M., Donato, D., Duncan, C., Eid, E., zu Ermgassen, P., Ewers Lewis, C., Macreadie, P., Glass, L., Gress, S., Jardine, S., Jones, T., Nsombo, E., Rahman, M., Sanders, C., Spalding, M., Landis, E., 2018. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13 (5), 12. Art. no. 055002 https://doi.org/10.1088/1748-9326/aabe1c.
  • [96] Sanders, C. J., Maher, D. T., Tait, D. R., Williams, D., Holloway, C., Sippo, J. Z., Santos, I. R., 2016. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeo. 121 (10), 2600-2609, https://doi.org/10.1002/2016JG003510.
  • [97] Sanders, C. J., Smoak, J. M., Naidu, A. S., Sanders, L. M., Patchineelam, S. R., 2010. Organic carbon burial in a mangrove forest, margin and intertidal mud flat. Estuar. Coast. Shelf Sci. 90 (3), 168-172, https://doi.org/10.1016/j.ecss.2010.08.013.
  • [98] Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., Megonigal, J. P., 2017. Limits on carbon sequestration in arid blue carbon ecosystems. Ecol. Appl. 27 (3), 859-874, https://doi.org/10.1002/eap.1489.
  • [99] Schlesinger, W. H., 1997. Biogeochemistry, an Analysis of Global Change. Acad. Press, San Diego, California, 688 pp.
  • [100] Shaltout, K. H., Ahmed, M. T., Alrumman, S. A., Ahmed, D. A., Eid, E. M., 2019. Evaluation of the carbon sequestration capacity of arid mangroves along nutrient availability and salinity gradients along the Red Sea coastline of Saudi Arabia. Oceanologia 62 (1), 14 pp. in press https://doi.org/10.1016/j.oceano.2019.08.002.
  • [101] Sherry, S., Ramon, A., Eric, M., Richard, E., Barry, W., Peter, D., Susan, T., 1998. Precambrian shield wetlands: Hydrologic control of the sources and export of dissolved organic matter. Clim. Change 40 (2), 167-188, https://doi.org/10.1023/A:1005496331593.
  • [102] SPSS, 2006. SPSS Base 15.0 User’s Guide. SPSS Inc., Chicago.
  • [103] Stringer, C. E., Trettin, C. C., Zarnoch, S. J., Tang, W., 2015. Carbon stocks of mangroves within the Zambezi River Delta, Mozambique. Forest Ecol. Manage. 354, 139-148, https://doi.org/10.1016/j.foreco.2015.06.027.
  • [104] Suárez-Abelenda, M., Ferreira, T. O., Camps-Arbestain, M., Rivera-Monroy, V. H., Macías, F., Nóbrega, G. N., Otero, X. L., 2014. The effect of nutrient-rich effluents from shrimp farming on mangrove soil carbon storage and geochemistry under semi-arid climate conditions in northern Brazil. Geoderma 213, 551-559, https://doi.org/10.1016/j.geoderma.2013.08.007.
  • [105] Taillardat, P., Friess, D. A., Lupascu, M., 2018. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14 (10), 20180251, https://doi.org/10.1098/rsbl.2018.0251.
  • [106] Tomlinson, P. B., 2016. The Botany of Mangroves. 2nd edn., Cambridge Univ. Press, Cambridge, 436 pp.
  • [107] Trading Economics, 2019. Saudi Arabia - CO2 emissions (kt). https://tradingeconomics.com/saudi-arabia/co2-emissions-kt-wb-data.html (accessed 25. Sept. 2019).
  • [108] Tue, N. T., Dung, L. V., Nhuan, M. T., Omori, K., 2014. Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. Catena 121, 119-126, https://doi.org/10.1016/j.catena.2014.05.008.
  • [109] Tue, N. T., Hamaoka, H., Sogabe, A., Quy, T. D., Nhuan, M. T., Omori, K., 2011. The application of δ13 C and C/N ratios as indicators of organic carbon sources and paleoenvironmental change of the mangrove ecosystem from Ba Lat Estuary, Red River, Vietnam. Environ. Earth Sci. 64 (5), 1475-1486, https://doi.org/10.1007/s12665-011-0970-7.
  • [110] Tue, N. T., Ngoc, N., Quy, T. D., Hamaoka, H., Nhuan, M. T., Omori, K., 2012. A cross-system analysis of sedimentary organic carbon in the mangrove ecosystems of Xuan Thuy National Park Vietnam. J. Sea Res. 67 (1), 69-76, https://doi.org/10.1016/j.seares.2011.10.006.
  • [111] Twilley, R. R., Chen, R. H., Hargis, T., 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut. 64 (1-2), 265-288, https://doi.org/10.1007/BF00477106.
  • [112] Twilley, R. R., Rovai, A. S., Riul, P., 2018. Coastal morphology explains global blue carbon distributions. Front. Eco. Environ. 16 (9), 503-508, https://doi.org/10.1002/fee.1937.
  • [113] Wilke, B. M., 2005. Determination of chemical and physical soil properties. In: Margesin, R., Schinner, F. (Eds.), Manual for Soil Analysis-Monitoring and Assessing Soil Bioremediation. Springer, Heidelberg, 47-95.
  • [114] Woomer, P. L., Tieszen, L. L., Tappan, G., Touré, A., Sall, M., 2004. Land use change and terrestrial carbon stocks in Senegal. J. Arid Environ. 59 (3), 625-642, https://doi.org/10.1016/j.jaridenv.2004.03.025.
  • [115] Xiaonan, D., Xiaoke, W., Lu, F., Zhiyun, O., 2008. Primary evaluation of carbon sequestration potential of wetlands in China. Acta. Ecol. Sinica 28 (2), 463-469, https://doi.org/10.1016/S1872-2032(08)60025-6.
  • [116] Xin, K., Yan, K., Gao, C., Li, Z., 2018. Carbon storage and its influencing factors in Hainan Dongzhangang mangrove wetlands. Mar. Freshwater Res. 69 (5), 771-779, https://doi.org/10.1071/MF17101.
  • [117] Xue, B., Yan, C., Lu, H., Bai, Y., 2009. Mangrove-derived organic carbon in sediment from Zhangjiang Estuary (China) mangrove wetland. J. Coast. Res. 25 (4), 949-956, https://doi.org/10.2112/08-1047.1.
  • [118] Yang, J., Gao, J., Liu, B., Zhang, W., 2014. Sediment deposits and organic carbon sequestration along mangrove coasts of the Leizhou Peninsula, southern China. Estuar. Coast. Shelf Sci. 136, 3-10, https://doi.org/10.1016/j.ecss.2013.11.020.
  • [119] Yong, Y., Baipeng, P., Guangcheng, C., Yan, C., 2011. Processes of organic carbon in mangrove ecosystems. Acta Ecol. Sinica 31 (3), 169-173, https://doi.org/10.1016/j.chnaes.2011.03.008.
  • [120] Zimmerman, A. R., Canuel, E. A., 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: Anthropogenic influence on organic matter composition. Mar. Chem. 69 (1-2), 117-137, https://doi.org/10.1016/S0304-4203(99)00100-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9545616d-05d6-4943-be5c-c861958ec4ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.