PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of number and size of sample plots on modelling growing stock volume based on Airborne Laser Scanning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Current forest growing stock inventory methods used in Poland are based on statistical methods using field measurements of trees on circular sample plots. Such measurements are carried out with traditional equipment, i.e. callipers and range finders. Nowadays, remote sensing based inventory techniques are becoming more popular and have already been applied in North America and some Scandinavian countries. Remote sensing based forest inventories require a certain amount of ground sample plots, which serve either as reference data used for model calibration and/or as a validation dataset for the assessment of the accuracy of modelled variables. Using a set of 900 ground sample plots and Airborne Laser Scanner (ALS) from the Milicz forest district, a statistical model for the estimation of plot growing stock volume was developed. Next, the developed model was once again fitted to different variants of sample plot size and number of sample plots. Each variant was selected from a full 900 sample plot set. The selection started from 800, 700, 600, …, down to 25 plots, respectively, and was carried out in proportion to the dominant tree age range. To account for the area effect, each plot number variant was similarly tested with various sample plot areas, i.e. 500, 400, …, 100 m2. Sampling in each variant was repeated in order to take into account the effect of a single selection. The results showed a strong relationship between obtained modelling errors and the size and number of used sample plots. It has been demonstrated that the number of sample plots has no influence on the accuracy of GSV estimation above about 300-400 sample plots (about 500 sample plots for bias), whereas sample plot size has a visible impact on estimation accuracy, which reduces with decreasing sample plot size, regardless of the number of sample plots. If it is about precision, results showed that the influence of a single selection to be relevant only below 300-400 plots (about 500 for bias) and the same trend can be observed in each sample plot size variant. The results showed it is possible to strongly reduce the number of ground sample plots (minimum 300- 400), while still maintaining decent accuracy and precision levels, at least in similarly investigated forest conditions.
Słowa kluczowe
Rocznik
Strony
5--22
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Forest Research Institute, Laboratory of Geomatics, Sekocin Stary, Raszyn, Poland
  • Forest Research Institute, Laboratory of Geomatics, Sekocin Stary, Raszyn, Poland
autor
  • Forest Research Institute, Laboratory of Geomatics, Sekocin Stary, Raszyn, Poland
  • Forest Research Institute, Laboratory of Geomatics, Sekocin Stary, Raszyn, Poland
autor
  • Forest Research Institute, Laboratory of Geomatics, Sekocin Stary, Raszyn, Poland
autor
  • Department of Forest Management, Geomatics and Forest Economics, Faculty of Forestry, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
Bibliografia
  • Bruchwald A., Dudek A., Michalak K., Rymer-Dudzińska T., Wróblewski L., Zasada M. [2000]: Wzory empiryczne do określania wysokości i pierśnicowej liczby kształtu grubizny drzewa (Empirical formulae for defining height and dbh shape figure of thick wood). Sylwan 144 [10]: 5-13
  • Frazer G.W., Magnussen S., Wulder M.A., Niemann K.O. [2011]: Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR--derived estimates of forest stand biomass. Remote Sensing of Environment 115 [2]: 636-649
  • Gobakken T., Næsset E. [2008]: Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research 38 [5]: 1095-1109
  • Gobakken T., Næsset E., Nelson R., Bollandsås O.M., Gregoire T.G., Ståhl G., Holm S., Ørka H.O., Astrup R. [2012]: Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning. Remote Sensing of Environment 123 [2012]: 443-456
  • Hayashi R., Kershaw J.A., Weiskittel A.R. [2015]: Evaluation of alternative methods for using LiDAR to predict aboveground biomass in mixed species and structurally complex forests in northeastern North America. Mathematical and Computational Forestry and Natural-Resource Sciences 7 [2]: 49-62
  • Holmgren J., Nilsson M., Olsson H. [2003]: Estimation of tree height and stem volume on plots using airborne laser scanning. Forest Science 49 [3]: 419-428
  • Holmström H., Nilsson M., Ståhl G. [2001]: Simultaneous estimations of forest parameters sing aerial photograph interpreted data and the k nearest neighbour method. Scandinavian Journal of Forest Research 16 [1]: 67-78
  • Hyyppä J., Yu X., Hyyppä H., Vastaranta M., Holopainen M., Kukko A., Kaartinen H., Jaakkola A., Vaaja M., Koskinen J., Alho P. [2012]: Advances in forest inventory using Airborne Laser Scanning. Remote sensing 2012 [4]: 1190-1207
  • Kallio E., Maltamo M., Packalén P. [2010]: Effect of sampling intensity on the accuracy of species-specific volume estimates derived with aerial data: A case study on five privately owned forest holdings. Proceedings of: 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems, 14-17 September 2010. Freiburg, Germany: 169-178
  • Lim K., Treitz P., Baldwin K., Morrison I., Green, J. [2003]: Lidar remote sensing of biophysical properties of tolerant northern hardwood forests. Canadian Journal of Remote Sensing 29 [5]: 648-678
  • Lindner M., Karjalainen T. [2007]: Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress. European Journal of Forest Research 126 [2]: 149-156
  • Maltamo M., Eerikäinen K., Packalén P., Hyyppä J. [2006]: Estimation of stem volume using laser scanning-based canopy height metrics. Forestry 79 [2]: 217-229
  • Maltamo M., Bollandsäs O.M., Gobakken T., Næsset E. [2016]: Large-scale prediction of aboveground biomass in heterogeneous mountain forests by means of Airborne Laser Scanning. Canadian Journal of Forest Research 46 [9]: 1138-1144
  • McKendry P. [2002]: Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83 [1]: 37-46
  • Miścicki S., Stereńczak K. [2012]: A two-phase inventory method for calculating standing volume and tree-density of forest stands in central Poland based on Airborne Laser Scanning data. Forest Research Papers 74 [2]: 127-136
  • Næsset E. [1997]: Estimating timber volume of forest stands using Airborne Laser Scanner data. Remote Sensing of Environment 61 [2]: 246-253
  • Næsset E. [2002]: Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment 80 [1]: 88-99
  • Næsset E., Gobakken T. [2005]: Estimating forest growth using canopy metrics derived from airborne laser scanner data. Remote Sensing of Environment 96: 453-465
  • Ruiz L.A., Hermosilla T., Mauro F., Godino M. [2014]: Analysis of the influence of plot dize and LiDAR density on forest structure attribute estimates. Forests 5 [5]: 936-951
  • Tonolli S., Dalponte M., Vescovo L., Rodeghiero M., Bruzzone L., Gianelle D. [2011]: Mapping and modelling forest tree volume using forest inventory and airborne laser scanning. European Journal of Forest Research 130 [4]: 569-577
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9542cea0-0de0-4ea8-8227-b7fec6a2b725
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.