Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider the Boussinesq PDE perturbed by a time-dependent forcing. Even though there is no smoothing effect for arbitrary smooth initial data, we are able to apply the method of self-consistent bounds to deduce the existence of smooth classical periodic solutions in the vicinity of 0. The proof is non-perturbative and relies on construction of periodic isolating segments in the Galerkin projections.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
143--158
Opis fizyczny
Bibliogr. 21 poz., tab.
Twórcy
autor
- Institute of Computer Science and Computational Mathematics Jagiellonian University ul. Łojasiewicza 6, Kraków, 30-348 Poland
autor
- Institute of Computer Science and Computational Mathematics Jagiellonian University ul. Łojasiewicza 6, Kraków, 30-348 Poland
Bibliografia
- [1] Zgliczyński P., Mischaikow K., Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation. Found. Comput. Math., 2001, 1(3), pp. 255–288.
- [2] Zgliczyński P., Rigorous numerics for dissipative partial differential equations. II. Periodic orbit for the Kuramoto-Sivashinsky PDE – a computer-assisted proof. Found. Comput. Math., 2004, 4(2), pp. 157–185.
- [3] Zgliczyński P., Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs. Topol. Methods Nonlinear Anal., 2010, 36(2), pp. 197–262.
- [4] Zgliczyński P., Steady state bifurcations for the Kuramoto-Sivashinsky equation –a computer assisted proof. AIMS J. of Comp. Dyn., to appear.
- [5] Zgliczynski P., Attracting fixed points for the Kuramoto-Sivashinsky equation: a computer assisted proof. SIAM J. Appl. Dyn. Syst., 2002, 1(2), pp. 215–235.
- [6] Cyranka J., Existence of Globally Attracting Fixed Points of Viscous Burgers Equation with Constant Forcing. A Computer Assisted Proof. Topol. Methods Nonlinear Anal., to appear.
- [7] Cyranka J., Zgliczyński P., Existence of Globally Attracting Solutions for One-Dimensional Viscous Burgers Equation with Nonautonomous Forcing – A Computer Assisted Proof. SIAM J. Appl. Dyn. Syst., 2015, 14(2), pp. 787–821.
- [8] Arioli G., Koch H., Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation. Arch. Ration. Mech. Anal., 2010, 197(3), pp. 1033–1051.
- [9] Arioli G., Koch H., Integration of dissipative partial differential equations: a case study. SIAM J. Appl. Dyn. Syst., 2010, 9(3), pp. 1119–1133.
- [10] Day S., Lessard J.P., Mischaikow K., Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal., 2007, 45(4), pp. 1398–1424.
- [11] Gameiro M., Lessard J.P., Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs. J. Differential Equations, 2010, 249(9), pp. 2237–2268.
- [12] Boussinesq J., Thorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl., 1872, 17(2), pp. 55–108.
- [13] Manoranjan V.S., Mitchell A.R., Morris J.L., Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Statist. Comput., 1984, 5(4), pp. 946–957.
- [14] Hirota R., Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J. Mathematical Phys., 1973, 14, pp. 810–814.
- [15] Zakharov V.E., On stochastization of one-dimensional chains of nonlinear oscillators. Sov. Phys.-JETP, 1974, 38, pp. 108–110.
- [16] Czechowski A., personal home page. http://www.ii.uj.edu.pl/˜czechows.
- [17] Srzednicki R., Periodic and constant solutions via topological principle of Ważewski. Univ. Iagel. Acta Math., 1987, 26, pp. 183–190.
- [18] Zgliczyński P., Trapping regions and an ODE-type proof of the existence and uniqueness theorem for Navier-Stokes equations with periodic boundary conditions on the plane. Univ. Iagel. Acta Math., 2003, 41, pp. 89–113.
- [19] Srzednicki R., Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations. Nonlinear Anal., 1994, 22(6), pp. 707–737.
- [20] Srzednicki R., W´ojcik K., A geometric method for detecting chaotic dynamics. J. Differential Equations, 1997, 135(1), pp. 66–82.
- [21] CAPD: Computer Assisted Proofs in Dynamics, a Package for Rigorous Numerics. http://capd.ii.uj.edu.pl.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-953eab08-69a8-4ed3-92c6-d88dc232ace8