PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Network model for thermal conductivities of unidirectional fiber-reinforced composites

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiberreinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).
Wydawca
Rocznik
Strony
533--540
Opis fizyczny
Bibliogr. 19 poz., wykr., tab.
Twórcy
autor
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
autor
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
autor
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
Bibliografia
  • [1] AGLIETTI G.S., SCHWINGSHACKL C.W., ROBERTSS.C., Shock Vib., 39 (2007), 381.
  • [2] GIBSON R.F., Compos. Struct., 92 (2010), 2793.
  • [3] SPRING G.S., TSAI S.W., J. Compos. Mater., 1 (1967),166.
  • [4] HASSELMAN D.P.H., JOHNSON L.F., J. Compos.Mater., 21 (1987), 508.
  • [5] PITCHUMANI R., YAO S.C., J. Heat Trans.-T. ASME.,113 (1991), 788.
  • [6] KULKARNI M.R., BRADY R.P., Compos. Sci. Technol.,57 (1997), 277.
  • [7] YAN P., JIANG C.P., SONG F., XU X.H., Chinese J.Aeronaut., 23 (2010), 54.
  • [8] ZOU M.Q., YU B.M., ZHANG D.M., J. Phys. D Appl.Phys., 35 (2002), 1867.
  • [9] WANG J.F., CARSON J.K., NORTH M.F., CLELAND D.J., Int. J. Heat Mass Tran., 49 (2006), 3075.
  • [10] NOOR A.K., SHAH R.S., Compos. Struct., 26 (1993),7.
  • [11] VEYRET D., CIOULACHTJIAN S., TADRIST L., PANTALONI J., J. Heat Trans.-T. ASME, 115 (1993), 866.
  • [12] ISLAM M.R., PRAMILA A., J. Compos. Mater., 33 (1999), 1699.
  • [13] ROCHA P.A., CRUZ M.E., Numer. Heat Tr. A-Appl., 39 (2001), 179.
  • [14] GRAHAM S., MCDOWELL D.L., J. Heat Trans.-T. ASME, 125 (2003), 383.
  • [15] SIHN S., ROY A.K., J. Compos. Mater., 45 (2011), 1245.
  • [16] PILLING M.W., YATES B., BLACK M.A., J. Mater. Sci., 14 (1979), 1326.
  • [17] THORNBURG J.D., PEARS C.D., ASME paper 65-WA/HT-4 (1965).
  • [18] ROLFES R., HAMMERSCHMIDT U., Compos. Sci. Technol.,54 (1995), 45.
  • [19] TURIAS I.J., GUTIERREZ ´ J.M., GALINDO P.L., Compos. Sci. Technol., 65 (2005), 609.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-953d445d-7847-4bc5-83d3-d3644a1a5611
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.