PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of wave processes of hydraulic oils on the operation of a hydraulic drive

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ procesów falowych występujących w olejach hydraulicznych na działanie napędu hydraulicznego
Języki publikacji
EN
Abstrakty
EN
The paper reviews the state of research of wave processes in hydraulic systems of machines, and their impact on the quality and stability of hydraulic drives. As noted in the works of previous researchers, these phenomena occur in hydraulic systems and adversely affect the quality and stability of their work, significantly reducing reliability. The method of construction of mathematical models is offered. A mathematical model of the hydraulic system with two series-connected hydraulic motors is built, taking into account transients. The Runge-KuttaFeldberg method with automatic change of the integration step was used to solve this model. The application of this method makes it possible to estimate the amplitude and frequency of the pressure wave in real time for each part of the pipeline. As a result of the analysis of the obtained transients it was concluded that at the length of the pressure line in a group hydraulic drive with 2 series-connected hydraulic motors up to 1.5 m, wave processes do not significantly affect the system and in the mathematical model they can be ignored. With the length of the pressure line from 1.5 m to 9 m, the wave processes in the cavity do not affect the stability of the system, although significantly impair the quality of its work. Hydraulic systems with a pressure line length of more than 9 m are not recommended for implementation, because the wave processes in the cavity lead to vibrations and noise in the hydraulic system and require additional measures to eliminate the impact of this phenomenon.
PL
Niniejszy artykuł stanowi przegląd badań nad procesami falowymi w układach hydraulicznych maszyn, ich wpływ na jakość i stabilność układów hydraulicznych. Jak zauważono w pracach poprzednich badaczy, te zjawiska występują w układach hydraulicznych i negatywnie wpływają na jakość i stabilność ich pracy znacząco zmniejszając ich niezawodność. Zaproponowano metodę budowy modeli matematycznych. Skonstruowano model matematyczny układu hydraulicznego z dwoma szeregowo połączonymi silnikami hydraulicznymi z uwzględnieniem napięć przejściowych. Do rozwiązania tego modelu zastosowano metodę Runge-Kutta-Feldberga z automatyczną zmianą kroku całkowania. Zastosowanie tej metody pozwala na oszacowanie amplitudy i częstotliwości fali ciśnienia w czasie rzeczywistym dla każdego odcinka przewodu. W wyniku przeprowadzonej analizy stwierdzono, że przy długości przewodów ciśnieniowych do 1,5 m w grupowym napędzie hydraulicznym z dwoma szeregowo połączonymi silnikami hydraulicznymi, procesy falowe nie wpływają znacząco na układ, a w modelu matematycznym można je ignorować. Przy długości przewodu ciśnieniowego w zakresie 1,5 m do 9 m, procesy falowe we wnętrzu nie wpływają na stabilność układu, ale znacząco wpływają na jakość jego pracy. Układy hydrauliczne o długości przewodów ciśnieniowych większej niż 9 m nie są zalecane, ponieważ procesy falowe we wnętrzu prowadzą do wibracji i hałasu w systemie hydraulicznym i wymagają dodatkowych działań w celu wyeliminowania wpływu tego zjawiska.
Rocznik
Strony
91--104
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Vinnytsia National Agrarian University, Vinniytsia, 21008, Ukraine
autor
  • Ladyzhyn Professional College of Vinnytsia National Agrarian University, Ladyzhyn, 24321, Ukraine
  • Vinnytsia National Agrarian University, Vinniytsia, 21008, Ukraine
autor
  • Lviv National Environmental University, Volodymyr the Great str 1., 80381, Dublyany, Zhovkva district, Lviv region, Ukraine
  • Angel Kanchev University of Ruse, Studentska 8, 7017 Ruse, Bulgaria
  • Lviv National Environmental University, 1 V.Velykoho Str., Dubliany, Lviv district, Lviv region, Ukraine, 80381
autor
  • Department of Biological Bases of Food and Feed Technology, University of Life Sciences in Lublin
Bibliografia
  • Karaiev, O., Bondarenko, L., Halko, S., Miroshnyk, O., Vershkov, O., Karaieva, T., Shchur, T., Findura, P., Prístavka, M. (2021). Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae, 24(3), 119-123.
  • Havrylenko, Y., Kholodniak, Y., Halko, S., Vershkov, O., Miroshnyk, O., Suprun, O., Dereza, O., Shchur, T., Śrutek, M. (2021a). Representation of a monotone curve by a contour with regular change in curvature. Entropy, 23(7), 923.
  • Havrylenko Y., Kholodniak Y., Halko S., Vershkov O., Bondarenko L., Suprun O., Miroshnyk, O., Shchur T., Śrutek M., Gackowska M. (2021b). Interpolation with specified error of a point series belonging to a monotone curve. Entropy, 23(5), 493.
  • Khasawneh A., Qawaqzeh, M., Kuchanskyy, V., Rubanenko, O., Miroshnyk, O., Shchur, T., Drechny, M., (2021). Optimal determination method of the transposition steps of an extra high voltage power transmission line. Energies, 14(20), 6791.
  • Mannheim, V., Simenfalvi, Z. (2020). Total Life Cycle of Polypropylene Products: Reducing Environmental Impacts in the Manufacturing Phase. Polymers, 12, 1901.
  • Maxit, L., Karimi, M., Guasch, O. (2021). Spatial Coherence of Pipe Vibrations Induced by an Internal Turbulent Flow. Journal of Sound and Vibration, 493, 115841.
  • Ivanov, M.I., Rutkevych, V.S., Kolisnyk, O.M., Lisovoy, I.O. (2019). Research on the block-portion separator parameters influence on the adjustment range of operating elements speed. INMATEH - Agricultural Engineering, 57, 37-44.
  • Panchenko, A., Voloshina, A., Boltyansky, O., Milaeva, I., Grechka, I., Khovanskyy, S., Svynarenko, M., Glibko, O., Maksimova, M., Paranyak, N. (2018a). Designing the Flow-through Parts of Distribution Systems for the PRG Series Planetary Hydraulic Motors. Eastern-European Journal of Enterprise Technologies, 3, 67-77.
  • Chang, Y.J., Kim, J.H., Jeon, C.H., Kim, C., Jung, S.Y. (2006). Development of an Integrated System for the Automated Design of a Gerotor Oil Pump. Journal of Mechanical Design, 129, 1099-1105.
  • Choi, T.H., Kim, M.S., Lee, G.S., Jung, S.Y., Bae, J.H., Kim, C. (2012). Design of Rotor for Internal Gear Pump Using Cycloid and Circular-Arc Curves. Journal of Mechanical Design, 134, 011005.
  • Stryczek, J., Bednarczyk, S., Biernacki, K. (2014a). Gerotor Pump with POM Gears: Design, Production Technology. Archives of Civil and Mechanical Engineering, 14, 391-397.
  • Gamez-Montero, P.J., Garcia-Vilchez, M., Raush, G., Freire, J., Codina, E. (2012). Teeth Clearance and Relief Grooves Effects in a Trochoidal-Gear Pump Using New Modules of GeroLAB. Journal of Mechanical Design, 134, 054502.
  • Furustig, J., Almqvist, A., Bates, C.A., Ennemark, P., Larsson, R.A. (2015). Two Scale Mixed Lubrication Wearing-in Model, Applied to Hydraulic Motors. Tribology International, 90, 248-256.
  • Stryczek, J., Bednarczyk, S., Biernacki, K. (2014b). Strength Analysis of the Polyoxymethylene Cycloidal Gears of the Gerotor Pump. Archives of Civil and mechanical Engineering, 14(4), 647-660.
  • Gunko, I.V. (1998). Matematychna Model Hrupovoho Hidropryvodu z Dvoma Hidromotoramy. Visnyk Vinnytskoho Politekh Instytutu, 2, 97-100.
  • Panchenko, A., Voloshina, A., Milaeva, I., Panchenko, I., Titova, O. (2018). The Influence of the Form Error after Rotor Manufacturing on the Output Characteristics of an Orbital Hydraulic Motor. International Journal of Engineering & Technology, 7, 1-5.
  • Zhao, X., Ning, D., Göteman, M., Kang, H. (2017). Effect of the PTO Damping Force on the Wave Pressures on a 2-D Wave Energy Converter. Journal of Hydrodynamics, Ser. B, 29, 863-870.
  • Zhang, L., Tijsseling, S.A., Vardy, E.A. (1999). FSI Analysis of Liquid-Filled Pipes. Journal of Sound and Vibration, 224(1), 69-99.
  • Zhang, Zh. (2019). Wave Tracking Method of Hydraulic Transients in Pipe Systems with Pump Shut-off under Simultaneous Closing of Spherical Valves. Renewable Energy, 132, 157-166.
  • Gao, P., Yu, T., Zhang, Y., Wang, J., Zhai, J. (2021). Vibration Analysis and Control Technologies of Hydraulic Pipeline System in Aircraft: A Review. Chinese Journal of Aeronautics, 34(4), 83-114.
  • Zecchin, A.C., Gong, J., Simpson, A.R., Lambert, M.F. (2014). Condition Assessment in Hydraulically Noisy Pipeline Systems Using a Pressure Wave Splitting Method. Procedia Engineering, 89, 1336-1342.
  • Gao, P., Yu, T., Zhang, Y., Wang, J., Zhai, J. (2021). Vibration Analysis and Control Technologies of Hydraulic Pipeline System in Aircraft: A Review. Chinese Journal of Aeronautics, 34, 83-114.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95347a57-b4f5-438c-bac7-9107c087181e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.