Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the effects of adding monofilament polypropylene fibers to concrete, focusing on its compressive and flexural strength. Results show that fiber doses up to 3.0 kg/m3 improve compressive strength by 10‒15% and flexural strength by 12‒20%. However, higher doses reduce mechanical properties due to uneven fiber distribution and lower mix workability. Using polypropylene fibers reduces the need for steel reinforcement, lowering the carbon footprint. This fiber-enhanced concrete is suitable for infrastructure applications, such as port quays, where durability and reduced maintenance are critical. Additionally, it offers cost benefits in projects without high dynamic load requirements.
Rocznik
Tom
Strony
5--13
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Czestochowa University of Technology, Faculty of Civil Engineering, 3 Akademicka St., 42-201 Częstochowa, Poland
Bibliografia
- 1. Bentur, A. & Mindess, S. (2006) Fibre Reinforced Cementitious Composites (2nd Edition). CRC Press, doi: 10.1201/9781482267747.
- 2. Bielenia, M. (2021) The role of recyclates in the polyurethane industry: Environmental and economic aspects. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 67 (139), pp. 29‒35, doi: doi: 10.17402/474.
- 3. Chernov, V. (2020) Macro-synthetic fiber reinforced concrete – experience with port pavements application. In: Kovler, K., Zhutovsky, S., Spatari, S., Jensen, O.M. (Eds) Concrete Durability and Service Life Planning. RILEM Bookseries, vol. 26, Springer, Cham, pp. 126–131, doi: 10.1007/978-3-030-43332-1_25.
- 4. Czajkowska, A., Raczkiewicz, W. & Ingaldi, M. (2023) Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies. Production Engineering Archives 29(3), pp. 288–297, doi: 10.30657/ pea.2023.29.33.
- 5. Do, T.M.D. & Lam, T.Q.K. (2021) Design parameters of steel fiber concrete beams. Magazine of Civil Engineering 2 (102), doi: 10.34910/MCE.102.7.
- 6. El Marzougui, M., Messaoudi, N., Dachry, W. & Bensassi, B. (2024) A model for decision-making to parameterizing demand driven material requirement planning using deep reinforcement learning. Production Engineering Archives 30 (3), pp. 377–393, doi: 10.30657/pea.2024.30.37.
- 7. Helbrych, P. (2023) The use of dispersed plastic reinforcement in concrete. Materials Research Proceedings 34, Quality Production Improvement and System Safety: QPI 16 ‒ CZOTO 10, pp. 146–153, doi: 10.21741/9781644902691-18.
- 8. Jamroży, Z. (2009) Beton i jego technologie. Warszawa: Wydawnictwo Naukowe PWN.
- 9. Jura, J. (2023) Analysis of the impact of sludge and slag waste on the basic properties of cement mortars. System Safety: Human ‒ Technical Facility ‒ Environment 5 (1), pp. 130–141, doi: 10.2478/czoto-2023-0015.
- 10. Khmil, R., Blikharskyy, Z., Vegera, P. & Kopiika, N. (2023) Bearing capacity of reinforced concrete beams with and without damages of rebar. Production Engineering Archives 29(3), pp. 298–303, doi: 10.30657/pea.2023.29. 34.
- 11. Kim, J. (2022) Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: An overview. Construction and Building Materials 328, 127071, doi: 10.1016/j.conbuildmat.2022.127071.
- 12. Kobaka, J. & Katzer, J. (2022) A principal component analysis in concrete design. Budownictwo o Zoptymalizowanym Potencjale Energetycznym 11, pp. 203–214, doi: 10.17512/ bozpe.2022.11.23.
- 13. Kumar, A., Pavan Prasad, N.R. & Sujith, S.K. (2021) Study on effects of hooked-end steel fiber-reinforced concrete. In: Narasimhan, M.C., George, V., Udayakumar, G., Kumar, A. (Eds) Trends in Civil Engineering and Challenges for Sustainability. Lecture Notes in Civil Engineering, vol. 99. Springer, Singapore, pp. 171–183, doi: 10.1007/978- 981-15-6828-2_14.
- 14. López-Buendía, A.M., Romero-Sánchez, M.D., Climent, V. & Guillem, C. (2013) Surface treated polypropylene (PP) fibres for reinforced concrete. Cement and Concrete Research 54, pp. 29–35, doi: 10.1016/j.cemconres. 2013.08.004.
- 15. Ma, M., Tam, V.W.Y., Le, K.N. & Osei-Kyei, R. (2022) Factors affecting the price of recycled concrete: A critical review. Journal of Building Engineering 46, 103743, doi: 10.1016/j.jobe.2021.103743.
- 16. Martínez-Barrera, G., Vigueras-Santiago, E., Hernández- López, S., Brostow, W. & Menchaca-Campos, C. (2005) Mechanical improvement of concrete by irradiated polypropylene fibers. Polymer Engineering and Science 45 (10), pp. 1426–1431, doi: 10.1002/pen.20418.
- 17. Milewski, D. (2021) Impact of demand characteristics on the profitability of a purchasing strategy. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 67 (139), pp. 70‒79, doi: 10.17402/478.
- 18. Pędziwiatr, K. & Sosik-Filipiak, K. (2021) Reduction of the movement of individual vehicles in cities – a case study. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 68 (140), pp. 47‒54, doi: 10.17402/486.
- 19. Pietrzak, A. (2024) Effect of polypropylene fiber structure and length on selected properties of concrete. Construction of optimized energy potential, Budownictwo o zoptymalizowanym potencjale energetycznym, BoZPE 13, pp. 78–88, doi: 10.17512/bozpe.2024.13.09.
- 20. Pikus, G.A. (2016) Steel fiber concrete mixture workability. Procedia Engineering 150, pp. 2119–2123, doi: 10.1016/j. proeng.2016.07.250.
- 21. PN-EN 1008:2004. Woda zarobowa do betonu ‒ Specyfikacja pobierania próbek, badanie i ocena przydatności wody zarobowej do betonu, w tym wody odzyskanej z procesów produkcji betonu (Mixing water for concrete ‒ specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete).
- 22. PN-EN 12350-2:2019-07. Badania mieszanki betonowej ‒ Część 2: Badanie konsystencji metodą opadu stożka (Testing fresh concrete ‒ Part 2: Slump test).
- 23. PN-EN 12390-1:2021-12. Badania betonu – Część 1: Kształt, wymiary i inne wymagania dotyczące próbek do badań i form (Testing hardened concrete ‒ Part 1: Shape, dimensions and other requirements for specimens and moulds).
- 24. PN-EN 12390-2:2019-07. Badania betonu – Część 2: Wykonywanie i pielęgnacja próbek do badań wytrzymałościowych (Testing hardened concrete ‒ Part 2: Making and curing specimens for strength tests).
- 25. PN-EN 12390-3:2019-07. Badania betonu ‒ Część 3: Wytrzymałość na ściskanie próbek do badań (Testing hardened concrete ‒ Part 3: Compressive strength of test specimens).
- 26. PN-EN 12390-5:2009. Badania betonu ‒ Część 5: Wytrzymałość na zginanie próbek do badania (Testing hardened concrete ‒ Part 5: Flexural strength of test specimens).
- 27. PN-EN 12620+A1:2010. Kruszywa do betonu (Aggregates for concrete).
- 28. PN-EN 14889-1:2007. Włókna do betonu – Część 1: Włókna stalowe – Definicje, wymagania i zgodność (Fibres for concrete ‒ Part 1: Steel fibres ‒ Definitions, specifications and conformity).
- 29. PN-EN 14889-2:2007. Włókna do betonu – Część 2: Włókna polimerowe – Definicje, wymagania i zgodność (Fibres for concrete ‒ Part 2: Polymer fibres ‒ Definitions, specifications and conformity).
- 30. PN-EN 197-1:2012. Cement ‒ Część 1: Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku (Cement Part 1: Composition, specifications and conformity criteria for common cements).
- 31. PN-EN 206+A2:2021-08. Beton ‒ Wymagania, właściwości użytkowe, produkcja i zgodność (Concrete ‒ Requirements, properties, production and compliance).
- 32. PN-EN 934-2+A1:2012. Domieszki do betonu, zaprawy i zaczynu ‒ Część 2: Domieszki do betonu ‒ Definicje, wymagania, zgodność, oznakowanie i etykietowanie (Admixtures for concrete, mortar and grout ‒ Part 2: Concrete admixtures ‒ Definitions, requirements, conformity, marking and labelling).
- 33. Šadzevičius, R., Gurskis, V. & Ramukevičius, D. (2023) Research on the properties of concrete with hemp shives. Construction of optimized energy potential, Budownictwo o zoptymalizowanym potencjale energetycznym, BoZPE 12, pp. 25–32, doi: 10.17512/bozpe.2023.12.03.
- 34. Vranayova, Z., Tkachenko, T., Lis, A., Savchenko, O. & Vranay, F. (2023) Green buildings in pursuit of healthy and safe human living environment. System Safety: Human ‒ Technical Facility ‒ Environment 5 (1), pp. 204–211, doi: 10.2478/czoto-2023-0022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-952ddc66-7b4a-4f8d-8013-c0c6aa714aa6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.