PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Constant Q-transform-based deep learning architecture for detection of obstructive sleep apnea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Obstructive sleep apnea (OSA) is a long-term sleep disorder that causes temporary disruption in breathing while sleeping. Polysomnography (PSG) is the technique for monitoring different signals during the patient’s sleep cycle, including electroencephalogram (EEG), electromyography (EMG), electrocardiogram (ECG), and oxygen saturation (SpO2). Due to the high cost and inconvenience of polysomnography, the usefulness of ECG signals in detecting OSA is explored in this work, which proposes a two-dimensional convolutional neural network (2D-CNN) model for detecting OSA using ECG signals. A publicly available apnea ECG database from PhysioNet is used for experimentation. Further, a constant Q-transform (CQT) is applied for segmentation, filtering, and conversion of ECG beats into images. The proposed CNN model demonstrates an average accuracy, sensitivity and specificity of 91.34%, 90.68% and 90.70%, respectively. The findings obtained using the proposed approach are comparable to those of many other existing methods for automatic detection of OSA.
Rocznik
Strony
493--506
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Department of Biotechnology and Medical Engineering, National Institute of Technology, Sector-1, Rourkela, Odisha, 769008, India
  • School of Computing Science and Engineering (SCOPE), VIT Vellore, Tiruvalam Road, Katpadi, Vellore, Tamil Nadu, 632014, India
  • Department of Electronics and Communication Engineering, Aditya Institute of Technology and Management, Main Street, Tekkali, Andhra Pradesh, 532201, India
  • Department of Biotechnology and Medical Engineering, National Institute of Technology, Sector-1, Rourkela, Odisha, 769008, India
  • Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Cracow, Poland
  • Department of Computer Science, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Abdar, M., Fahami, M.A., Rundo, L., Radeva, P., Frangi, A.F., Acharya, U.R., Khosravi, A., Lam, H.-K., Jung, A. and Nahavandi, S. (2022). Hercules: Deep hierarchical attentive multilevel fusion model with uncertainty quantification for medical image classification, IEEE Transactions on Industrial Informatics 19(1): 274-285.
  • [2] Abdar, M., Khosravi, A., Islam, S.M.S., Acharya, U.R. and Vasilakos, A.V. (2022). The need for quantification of uncertainty in artificial intelligence for clinical data analysis: Increasing the level of trust in the decision-making process, IEEE Systems, Man, and Cybernetics Magazine 8(3): 28-40.
  • [3] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U.R., Makarenkov, V. and Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Information Fusion 76: 243-297.
  • [4] Abdar, M., Salari, S., Qahremani, S., Lam, H.-K., Karray, F., Hussain, S., Khosravi, A., Acharya, U.R., Makarenkov, V. and Nahavandi, S. (2023). UncertaintyFuseNet: Robust uncertainty-aware hierarchical feature fusion model with ensemble Monte Carlo dropout for COVID-19 detection, Information Fusion 90: 364-381.
  • [5] Almutairi, H., Hassan, G.M. and Datta, A. (2021). Classification of obstructive sleep apnea from single-lead ECG signals using convolutional neural and long short term memory networks, Biomedical Signal Processing and Control 69: 102906.
  • [6] Aydemir, E., Tuncer, T. and Dogan, S. (2020). A tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method, Medical Hypotheses 134: 109519.
  • [7] Balim, M.A., Hanilc¸i, C. and Acir, N. (2021). Motor imagery signal classification using constant-Q transform for BCI applications, 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, pp. 1306-1310.
  • [8] Baygin, M., Barua, P.D., Chakraborty, S., Tuncer, I., Dogan, S., Palmer, E.E., Tuncer, T., Kamath, A.P., Ciaccio, E.J. and Acharya, U.R. (2023). CCPNet136: Automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals, Physiological Measurement 44(3): 035008-035018.
  • [9] Bo, H., Li, H., Ma, L. and Yu, B. (2014). A constant q transform based approach for robust EEG spectral analysis, 2014 International Conference on Audio, Language and Image Processing, Shanghai, China, pp. 58-63.
  • [10] Brown, J.C. (1991). Calculation of a constant Q spectral transform, The Journal of the Acoustical Society of America 89(1): 425-434.
  • [11] Bsoul, M., Minn, H. and Tamil, L. (2010). Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG, IEEE Transactions on Information Technology in Biomedicine 15(3): 416-427.
  • [12] Chang, H.-Y., Yeh, C.-Y., Lee, C.-T. and Lin, C.-C. (2020). A sleep apnea detection system based on a one-dimensional deep convolution neural network model using single-lead electrocardiogram, Sensors 20(15): 4157.
  • [13] Chen, L., Zhang, X. and Song, C. (2014). An automatic screening approach for obstructive sleep apnea diagnosis based on single-lead electrocardiogram, IEEE Transactions on Automation Science and Engineering 12(1): 106-115.
  • [14] Dey, D., Chaudhuri, S. and Munshi, S. (2018). Obstructive sleep apnea detection using convolutional neural network based deep learning framework, Biomedical Engineering Letters 8(1): 95-100.
  • [15] Dogan, A., Akay, M., Barua, P.D., Baygin, M., Dogan, S., Tuncer, T., Dogru, A.H. and Acharya, U.R. (2021). PrimePatNet87: Prime pattern and tunable Q-factor wavelet transform techniques for automated accurate EEG emotion recognition, Computers in Biology and Medicine 138: 104867.
  • [16] Dogan, S. and Tuncer, T. (2021). A novel statistical decimal pattern-based surface electromyogram signal classification method using tunable Q-factor wavelet transform, Soft Computing 25: 1085-1098.
  • [17] Erdenebayar, U., Kim, Y.J., Park, J.-U., Joo, E.Y. and Lee, K.-J. (2019). Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram, Computer Methods and Programs in Biomedicine 180: 105001.
  • [18] Fatimah, B., Singh, P., Singhal, A. and Pachori, R.B. (2020). Detection of apnea events from ECG segments using Fourier decomposition method, Biomedical Signal Processing and Control 61: 102005.
  • [19] Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K. and Stanley, H.E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation 101(23): e215-e220.
  • [20] Gupta, S., Cepeda-Valery, B., Romero-Corral, A., Shamsuzzaman, A., Somers, V.K. and Pressman, G.S. (2012). Association between QRS duration and obstructive sleep apnea, Journal of Clinical Sleep Medicine 8(6): 649-654.
  • [21] Hammad, M., Abd El-Latif, A.A., Hussain, A., Abd El-Samie, F.E., Gupta, B.B., Ugail, H. and Sedik, A. (2022). Deep learning models for arrhythmia detection in IoT healthcare applications, Computers and Electrical Engineering 100: 108011.
  • [22] Hammad, M., Iliyasu, A.M., Subasi, A., Ho, E.S. and Abd El-Latif, A.A. (2020). A multitier deep learning model for arrhythmia detection, IEEE Transactions on Instrumentation and Measurement 70: 1-9.
  • [23] Hassan, A.R. and Haque, M.A. (2017). An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting, Neurocomputing 235: 122-130.
  • [24] Jackowska-Zduniak, B. (2022). Stochastic models of the slow/fast type of atrioventricular nodal reentrant tachycardia and tachycardia with conduction aberration, International Journal of Applied Mathematics and Computer Science 32(3): 429-440, DOI: 10.34768/amcs-2022-0031.
  • [25] Jayaraman, T. and Chinnusamy, G.S. (2022). Performance analysis of a dual stage deep rain streak removal convolution neural network module with a modified deep residual dense network, International Journal of Applied Mathematics and Computer Science 32(1): 111-123, DOI: 10.34768/amcs-2022-0009.
  • [26] Khalil, M. and Rifaie, O. (1998). Electrocardiographic changes in obstructive sleep apnoea syndrome, Respiratory Medicine 92(1): 25-27.
  • [27] Khandoker, A.H., Gubbi, J. and Palaniswami, M. (2009). Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings, IEEE Transactions on Information Technology in Biomedicine 13(6): 1057-1067.
  • [28] Kompa, B., Snoek, J. and Beam, A.L. (2021). Second opinion needed: Communicating uncertainty in medical machine learning, NPJ Digital Medicine 4(1): 4.
  • [29] Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science 31(1): 85-106, DOI: 10.34768/amcs-2021-0007.
  • [30] Kumar, T.S. and Kanhangad, V. (2018). Gabor filter-based one-dimensional local phase descriptors for obstructive sleep apnea detection using single-lead ECG, IEEE Sensors Letters 2(1): 1-4.
  • [31] Lin, R., Lee, R.-G., Tseng, C.-L., Zhou, H.-K., Chao, C.-F. and Jiang, J.-A. (2006). A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks, Biomedical Engineering: Applications, Basis and Communications 18(03): 138-143.
  • [32] Mateo, C., and Talavera, J.A. (2020). Bridging the gap between the short-time Fourier transform (STFT), wavelets, the constant-Q transform and multi-resolution STFT, Signal, Image and Video Processing 14(8): 1535-1543.
  • [33] Mashrur, F.R., Islam, M.S., Saha, D.K., Islam, S.R. and Moni, M.A. (2021). SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals, Computers in Biology and Medicine 134: 104532.
  • [34] Nishad, A., Pachori, R.B. and Acharya, U.R. (2018). Application of TQWT based filter-bank for sleep apnea screening using ECG signals, Journal of Ambient Intelligence and Humanized Computing, DOI: 10.1007/s12652-018-0867-3.
  • [35] Nixon, G.M. and Brouillette, R.T. (2002). Diagnostic techniques for obstructive sleep apnea: Is polysomnography necessary?, Paediatric Respiratory Reviews 3(1): 18-24.
  • [36] Patro, K.K., Allam, J.P., Hammad, M., Tadeusiewicz, R. and Pławiak, P. (2023). SCovNet: A skip connection-based feature union deep learning technique with statistical approach analysis for the detection of COVID-19, Biocybernetics and Biomedical Engineering 43(1): 352-368.
  • [37] Patro, K.K., Prakash, A.J., Samantray, S., Pławiak, J., Tadeusiewicz, R. and Pławiak, P. (2022). A hybrid approach of a deep learning technique for real-time ECG beat detection, International Journal of Applied Mathematics and Computer Science 32(3): 455-465, DOI: 10.34768/amcs-2022-0033.
  • [38] Penzel, T., Moody, G.B., Mark, R.G., Goldberger, A.L. and Peter, J.H. (2000). The apnea-ECG database, Computers in Cardiology 2000, Cambridge, USA, Vol. 27, pp. 255-258.
  • [39] Prakash, A.J., Patro, K.K., Hammad, M., Tadeusiewicz, R. and Pławiak, P. (2022). BAED: A secured biometric authentication system using ECG signal based on deep learning techniques, Biocybernetics and Biomedical Engineering 42(4): 1081-1093.
  • [40] Psaros, A.F., Meng, X., Zou, Z., Guo, L. and Karniadakis, G.E. (2023). Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons, Journal of Computational Physics 477: 111902.
  • [41] Ramar, K. and Guilleminault, C. (2008). Sleep apnea (central and obstructive), in H.R. Smith et al. (Eds), Sleep Medicine, Cambridge University Press, Cambridge, pp. 129-156.
  • [42] Shen, Q., Qin, H., Wei, K. and Liu, G. (2021). Multiscale deep neural network for obstructive sleep apnea detection using RR interval from single-lead ECG signal, IEEE Transactions on Instrumentation and Measurement 70: 1-13.
  • [43] Singh, S.A. and Majumder, S. (2019). A novel approach OSA detection using single-lead ECG scalogram based on deep neural network, Journal of Mechanics in Medicine and Biology 19(04): 1950026.
  • [44] Wang, T., Lu, C. and Shen, G. (2019a). Detection of sleep apnea from single-lead ECG signal using a time window artificial neural network, BioMed Research International 2019: 9768072.
  • [45] Wang, T., Lu, C., Shen, G. and Hong, F. (2019b). Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network, PeerJ 7: e7731.
  • [46] Zarei, A. and Asl, B.M. (2018). Automatic detection of obstructive sleep apnea using wavelet transform and entropy-based features from single-lead ECG signal, IEEE Journal of Biomedical and Health Informatics 23(3): 1011-1021.
  • [47] Zarei, A. and Asl, B.M. (2020). Performance evaluation of the spectral autocorrelation function and autoregressive models for automated sleep apnea detection using single-lead ECG signal, Computer Methods and Programs in Biomedicine 195: 105626.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-952598a3-4f4e-4d38-a300-04cbb0cbfa26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.