Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Efficient consumption of available resources and fulfillment of increasing demands are the two main challenges which are addressed by exploring advanced multiple access schemes along with efficient modulation techniques. To this end, non-orthogonal multiple access (NOMA) is discussed as a promising scheme for future 5G traffic. NOMA enables the users to share same resource block, permitting certain level of interference. In this paper, we propose filtered OFDM (F-OFDM) as a transmission waveform for NOMA systems, as it offers all the advantages of OFDM with the additional provision of sub-band filtering to satisfy the diverse services of the users. We examine F-OFDM in both downlink and uplink NOMA systems. Error-related performances of both downlink and uplink F-OFDM NOMA systems are analyzed and compared with conventional OFDM NOMA system over Nakagami-m fading channel. The results show that the error performance of F-OFDM NOMA is better than that of OFDM NOMA. An improvement of about 2 dB and 1 dB in bit error rate is achieved in downlink and uplink F-OFDM NOMA, respectively. Monte Carlo simulations are conducted for different values of fading parameter m, supporting the obtained analytical results.
Rocznik
Tom
Strony
11--23
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Advanced Communication Lab, Department of Electronics and Communication Engineering, National Institute of Technology Srinagar, Jammu and Kashmir, India
autor
- Advanced Communication Lab, Department of Electronics and Communication Engineering, National Institute of Technology Srinagar, Jammu and Kashmir, India
Bibliografia
- [1] A. Benjebbour et al., „NOMA: From concept to standardization", in IEEE Conf. on Standards for Commun. and Networking (CSCN), Tokyo, 2015, pp. 18-23 (DOI: 10.1109/CSCN.2015.7390414).
- [2] D. Tse and P. Viswanath, “Fundamentals of Wireless Communication”. Cambridge University Press, 2005 (ISBN: 9780511807213).
- [3] M. Aldababsa, „A tutorial on non-orthogonal multiple access (NOMA) for 5G and beyond", Wireless Commun. and Mobile Comput., vol. 2018, 2018 (DOI: 10.1155/2018/9713450).
- [4] S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, „Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges", in IEEE Commun. Surveys and Tut., vol. 19, no. 2, 2017, pp. 721-742 (DOI: 10.1109/COMST.2016.2621116).
- [5] Y. Chen et al., „Toward the standardization of non-orthogonal multiple access for next generation wireless networks", in IEEE Commun. Mag., vol. 56, no. 3, 2018, pp. 19-27 (DOI: 10.1109/MCOM.2018.1700845).
- [6] K. Arslan and S. Y. Shin, „Linear precoding techniques for OFDM-based NOMA over frequency-selective fading channels", IETE J. of Research, vol. 63, no. 4, 2017, pp. 536-551 (DOI: 10.1080/03772063.2017.1299045).
- [7] V. K. Trivedi et al., „Enhanced OFDM-NOMA for next generation wireless communication: A study of PAPR reduction and sensitivity to CFO and estimation errors", AEU-Int. J. of Electron. and Commun., vol. 102, 2019, pp. 9-24 (DOI: 10.1016/j.aeue.2019.01.009).
- [8] Y. Cai et al., „Modulation and Multiple Access for 5G Networks", IEEE Commun. Surveys and Tutorials, vol. 20, no. 1, pp. 629-646, 2018 (DOI: 10.1109/COMST.2017.2766698).
- [9] X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, „Filtered-OFDM - enabler for exible waveform in the 5th generation cellular networks", in Proc. IEEE Global Commun. Conf. (GLOBECOM), San Diego, 2015, pp. 1-6 (DOI: 10.1109/GLOCOM.2015.7417854).
- [10] P. Guan et al., „5G Field Trials: OFDM-based waveforms and mixed numerologies", IEEE J. on Selected Areas in Commun., vol. 35, no. 6, pp. 1234-1243, 2017 (DOI: 10.1109/JSAC.2017.2687718).
- [11] F. A. P. de Figueiredo, N. F. T. Aniceto, J. Seki, I. Moerman, and G. Fraidenraich, „Comparing F-OFDM and OFDM performance for MIMO systems considering a 5G scenario", in Proc. IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 2019, pp. 532-535, (DOI: 10.1109/5GWF.2019.8911702).
- [12] J. J. L. Quispe and L. G. P. Meloni, „Pulse shaping filter design for filtered OFDM transceivers", in Proc. of the 3rd Brazilian Technol. Symp., 2019, pp. 131-143 (DOI: 10.1007/978-3-319-93112-8-15).
- [13] J. Yli-Kaakinen, T. Levanen, A. Palin, M. Renfors, and M. Valkama, „Generalized fast-convolution-based filtered-OFDM: techniques and application to 5G new radio", IEEE Transac. on Signal Process., vol. 68, pp. 1213-1228, 2020 (DOI: 10.1109/TSP.2020.2971949).
- [14] T. B. Deepa, „Performance evaluation of polar coded filtered OFDM for low latency wireless communications", Wireless Personal Commun., 2020 (DOI: 10.1007/s11277-020-07777-2).
- [15] K. C. Hu and A. G. Armada, „SINR analysis of OFDM and F-OFDM for machine type communications", in IEEE 27th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Commun. (PIMRC), Valencia, Spain, 2016, pp. 1-6 (DOI: 10.1109/PIMRC.2016.7794702).
- [16] S.Wang, J. S. Thompson, and P. M. Grant, „Closed-form expressions for ICI/ISI in filtered OFDM systems for asynchronous 5G uplink", IEEE Transac. on Commun., vol. 65, no. 11, pp. 4886-4898, 2017 (DOI: 10.1109/TCOMM.2017.2698478).
- [17] J. Abdoli, M. Jia, and J. Ma, „Filtered OFDM: A new waveform for future wireless systems", in Proc. IEEE 16th Int. Workshop on Signal Process. Advances in Wireless Commun. (SPAWC), 2015, pp. 66-70 (DOI: 10.1109/SPAWC.2015.7227001).
- [18] M. Nakagami, „The m-distribution - a general formula of intensity distribution of rapid fading", in Proc. Statistical Methods in Radio Wave Propag., Los Angeles, CA, USA, 1960, pp. 3-36 (DOI: 10.1016/B978-0-08-009306-2.50005-4).
- [19] H. Tabassum, M. S. Ali, E. Hossain, M. J. Hossain, and D. I. Kim, „Uplink vs. downlink NOMA in cellular networks: challenges and research directions", in Proc. IEEE 85th Vehic. Technol. Conf., Sydney, 2017, pp. 1-7 (DOI: 10.1109/VTCSpring.2017.8108691).
- [20] Y. Neng et al., „Uplink nonorthogonal multiple access technologies toward 5G: A survey", Wireless Commun. and Mobile Comput., 2018 (DOI: 10.1155/2018/6187580).
- [21] K. Ferdi and H. Kaya, „BER performances of downlink and uplink NOMA in the presence of SIC errors over fading channels", IET Commun., 2018 (DOI: 10.1049/iet-com.2018.5278).
- [22] M. Jain et al., „Performance analysis at far and near user in NOMA based system in presence of SIC error", AEU-Int. J. of Electronics and Commun., 2020, (DOI: 10.1016/j.aeue.2019.152993).
- [23] J. Proakis, M. Salehi, and G. Bauch, “Contemporary communication systems using MATLAB”. Nelson Education, 2012 (ISBN: 9780495082514).
- [24] M. K. Simon and M. S. Alouini, “Digital Communication Over Fading Channels”. New York: Wiley, 2005 (ISBN: 9780471649533).
- [25] I. S. Gradshteyn, I. M. Ryzhik, “Table of integrals, series, and products”. San Diego: Academic Press, 2007 (ISBN: 9780123736376).
- [26] N. Kapucu and M. Bilim, „Analysis of analytical capacity for Fisher-Snedecor F fading channels with different transmission schemes", Electronics Letters, vol. 55, no. 5, pp. 283-285, 2019 (DOI: 10.1049/el.2018.7813).
- [27] Hypergeometric function, Wolfram mathworld, 2017 [Online]. Available: https://functions.wolfram.com/PDF/Hypergeometric2F1.pdf
- [28] Parabolic cylindrical function, Wolfram mathworld, 2017 [Online]. Available: http://functions.wolfram.com/07.41.16.0006.01.
- [29] Parabolic cylindrical function Wolfram mathworld, 2017 [Online]. Available: https://functions.wolfram.com/PDF/ParabolicCylinderD.pdf.
- [30] Kummer conuent hypergeometric function Wolfram mathworld, 2017 [Online]. Available: http://functions.wolfram.com/07.20.21.0012.01.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95235af6-3dbc-4d0d-930d-e4b3480659b0