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Abstract
Photogrammetric products obtained by processing data acquired with Unmanned Aerial Vehicles (UAVs) are used in many fields.Various structures are analysed, including roads. Many roads located in cities are characterised by heavy traffic. This makes itimpossible to avoid the presence of cars in aerial photographs. However, they are not an integral part of the landscape, so theirpresence in the generated photogrammetric products is unnecessary. The occurrence of cars in the images may also lead to errorssuch as irregularities in digital elevation models (DEMs) in roadway areas and the blurring effect on orthophotomaps. Theresearch aimed to improve the quality of photogrammetric products obtained with the Structure from Motion algorithm. To fulfilthis objective, the Yolo v3 algorithm was used to automatically detect cars in the images. Neural network learning was performedusing data from a different flight to ensure that the obtained detector could also be used in independent projects. Thephotogrammetric process was then carried out in two scenarios: with and without masks. The obtained results show that theautomatic masking of cars in images is fast and allows for a significant increase in the quality of photogrammetric products suchas DEMs and orthophotomaps.
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1 Introduction

Unmanned Aerial Vehicles (UAVs), due to their affordability and theability to generate accurate photogrammetric products, are usedin many areas, including land surveying (Koeva et al., 2018; Šafářet al., 2021), agriculture (Delavarpour et al., 2021; Kaivosoja et al.,2021), forestry (Dainelli et al., 2021; Pessacg et al., 2022), mining(Ge et al., 2016; Park and Choi, 2020), archeology (Campana, 2017;Fiz et al., 2022), construction (Li and Liu, 2019; Yahya et al., 2021),and road construction (Cardenal et al., 2019; Zulkipli and Tahar,2018). Furthermore, 3D modelling of the existing infrastructure iscrucial for developing increasingly popular smart cities. The useof UAVs allows for rapid and relatively inexpensive acquisition ofa significant amount of data from the study area, compared to othermeasurement methods (Roberts et al., 2020).The Structure from Motion – MultiView Stereo (SfM-MVS) tech-nique is mostly used to process UAV data (Carrera-Hernández et al.,

2020; Eltner and Sofia, 2020; Nyimbili et al., 2016; Snavely et al.,2008). SfM allows for automatic orientation of images while MVSenables 3D reconstruction of a captured scene. SfM features severalproperties that are essential for handling large sets of UAV images.These are: high level of automation, ability to handle perspectiveand scale changes, processing data without prior knowledge aboutneither interior camera parameters, nor exterior image orienta-tion. To ensure successful performance of this method, the imagesused for reconstruction should be characterised by sufficiently highoverlap (at least 60-70%, typically 80-90%). At first, SfM searchesfor features in the whole image collection and describes them, forexample using scale-invariant feature transform (SIFT) detectorand descriptor. Then, descriptors are matched, and image point toimage point correspondences are established. SfM is an incremen-tal algorithm which forms an image block by successively orientingnew images, typically using 2D-3D correspondences (resection),along with triangulating new object points (forward intersection).
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Random sample consensus (RANSAC) or other sample consensusbased algorithms are applied to eliminate outlier matches. This pro-cess is interleaved with robust Bundle Adjustment (BA) to improveaccuracy in intermediate steps. As a result, SfM provides fairly accu-rate estimations of camera positions and rotation angles, along witha collection of object points (Structure), that is sometimes referredto as a sparse point cloud. The alignment of an image block can befurther enhanced by running BA with ground control points (GCPs),and image positions and orientation angles provided by GNSS/INSsystem (if available). Once the camera positions and rotation angleshave been accurately determined, it is possible to proceed to densefeature matching using MVS techniques to generate a dense pointcloud (Bianco et al., 2018; Jiang et al., 2020; Iglhaut et al., 2019).The rapid development of infrastructure and the need to ensuresafety of road systems require frequent measurements related tomonitoring, design, construction, and maintenance. Topographicinformation is typically obtained through land surveying devices,i.e. total stations or GNSS receivers. They allow for reaching highmeasurement accuracy but also require significant human and timeresources. Furthermore, terrestrial measurements highly dependon the human factor which may result in systematic errors. It canalso pose problems to directly access some areas in the terrain ofvaried characteristics. The use of UAVs allows for quick data ac-quisition over vast areas. At the same time, it is much safer thanterrestrial measurements when working on roads or areas withvaried relief (Cardenal et al., 2019; Tan and Li, 2019; Zulkipli andTahar, 2018).Masking of cars and other land vehicles in images can be per-formed manually. However, this is a lengthy process, especiallywhen processing highly congested roads. In both theory and prac-tice, tendencies towards enhancing process automation can be no-ticed. There is a desire for replacing human work with the use ofalgorithms and for reducing the working time of operators (Coombset al., 2020; Gruen, 2021). Vehicles can be detected in images muchmore efficiently by implementing automatic detection and subse-quent processing of the results into masks (Yang et al., 2021; Zhuet al., 2021). Currently, numerous algorithms are available for objectdetection in images. Some of them are based on a multi-step oper-ation involving information area selection, feature extraction, andclassification (Xiao et al., 2020; Zhao et al., 2019). With the devel-opment of deep neural networks, Convolutional Neural Networks(CNN) algorithms have gained popularity (Indolia et al., 2018; Hanet al., 2021; Li and Lin, 2020). Additionally, to address the problem ofidentifying many objects in one image, the Region-based Convolu-tional Neural Networks (R-CNN) solution was introduced. It is alsopossible to use a CNN convolutional neural network combined withthe region proposal algorithm which poses the object location hy-pothesis (Girshick et al., 2014). This technique was developed intoan improved algorithm called Fast R-CNN (Girshick et al., 2015). Itsimplementation aimed at mitigating errors of previous algorithmsby building a faster algorithm based on a convolutional feature mapgenerated directly from an input image. Another solution was theFaster R-CNN approach (Ren et al., 2017), in which an image isalso provided as input to the convolutional network. However, it isnot based on a selective search like the two previous versions, buton the introduction of Regional Proposal Network (RPN). One ofthe most commonly used object detection algorithms is YOLO (YouOnly Look Once). It is a state-of-the-art approach that allows for aone-step operation, in which a region proposal field is generatedduring classification. This means that a single convolutional net-work simultaneously predicts multiple bounding boxes and classprobabilities. Thanks to the detection speed, the algorithm is alsoused for real-time operations (Gromada et al., 2022; Koay et al.,2021; Redmon et al., 2016). The algorithm and its modifications arewidely used for object detection in images acquired with UAVs (Baoet al., 2021; Luo et al., 2020; Sahin and Ozer, 2021; Tan et al., 2021).Aerial data acquisition using UAVs is connected with captur-ing cars present in a study area. They are not integral landscape

Figure 1. Used DJI Phantom 4Pro v2.0 UAV
elements thus their presence in photogrammetric products is un-necessary. Additionally, in the case of digital elevation models, theymay generate errors impossible to detect without original imagesshowing exact car locations. This paper presents an approach usingthe YOLO v3 object detection algorithm to mask cars in images ac-quired with UAVs. It also describes the photogrammetric processingthat was performed on the images with and without masks, andthe digital elevation model and orthophotomap generation. Theresearch aimed to show that automatic masking of cars on UAVimages allows for improving the quality of such products as digitalelevation models and orthophotomaps. An additional research as-pect was the optimisation problem. Manual car masking is a highlytime-consuming process, particularly when mapping roads withheavy traffic. The use of the YOLO detector makes it possible tocreate a detection model that can be used in other projects withoutthe need to duplicate the activities associated with manual maskingof cars.
2 Materials andMethods

2.1 Fieldwork

A photogrammetric flight for the study was carried out with a DJIPhantom 4 Pro v2.0 (Figure 1). This device is equipped with a 1-inch,20-megapixel CMOS global shutter camera with gimbal stabilisa-tion. The camera is equipped with an f = 8.8 mm lens, which cor-responds to f = 24 mm lens for a full frame format. The imageswere stored in the JPEG files, with full resolution of 5472 × 3648pixels. Exposure parameters were set to automatic. The UAV wasnot equipped with an RTK system, so the coordinates of the projec-tion centres acquired with the navigation module were not takeninto account in the alignment process. The 4S LiPo battery suppliedpower allowing for up to 30 minutes of an uninterrupted flight.The photogrammetric data acquisition was carried out on 21stAugust 2021, in the city of Kraków (50◦03′41′′N 19◦56′18′′E).The measurement structure was a 700 m long and 50 m wideroad (Figure 2). The photogrammetric flight included additionalstrips of approximately 40 m next to the road. Due to its geometry,with one dimension significantly exceeding the other, the mea-surement structure can be classified as linear. In order to enablesubsequent georeferencing and accuracy checks, 32 ground control
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Figure 2. Study area. Coordinates are referred to UTM Zone 34 N (EPSG: 32634). Background image: Google Earth, earth.google.com/web/.

points (GCPs) were measured with attempting to maintain theirregular distribution throughout the study area. Only natural pointswere used. The survey was performed using the RTK techniquewith the use of two Leica GS16 receivers, one as a rover and theother one as a base in the immediate vicinity of the research area.The coordinates of the base were adjusted based on the coordinatesof the ASG-EUPOS permanent system station KRA1, located 765meters from the base. The coordinates of GCPs were refined basedon corrections received from the adjustment of the KRA1 – basevector. Planimetric (X, Y) coordinates of the GCPs were definedin the ETRS89 / Poland CS2000 zone 7 (EPSG: 2178) coordinatesystem, and their height (Z) was determined in the Kronstadt 86height/vertical reference system. The research area is located inthe city centre and covers a highly congested road, which was a keyfactor for the selection of this area as a test field for the conductedresearch.The photogrammetric flight was designed and performed usingthe DJI Pilot application. The endlap and sidelap were set to 80%.The flight was made in four rows, nadiral images were taken ata height of 68 m above ground, which results into a ground sampledistance of 1.86 cm/pixel. Due to the limited battery life and thesignificant distance of the flight in the city centre, it was dividedinto two parts to avoid loss of visibility and communication withthe aircraft. A total of 216 images were obtained.
2.2 YOLO v3 algorithm

The YOLO v3 algorithm (Redmon and Farhadi, 2018) was used todetect cars in the images. The algorithm is based on the CNN andallows for the detection of objects both in images and in real-timein videos. The algorithm enables the detection of multiple objectsin single images by assigning them specific classes and indicatingtheir locations in the bounding box. The evaluation of regions isperformed on the basis of their similarity to predefined classes. Thealgorithm works by dividing the image into a grid in which theregion’s probability is predicted for each cell. Next, the fitting ofbounding boxes is performed, whose size is determined by 4 coor-dinates: tx, ty, tw, th. Object confidence and class predictions arecalculated using logistic regression, which allows for the correctprediction of objects belonging to more than one class. The selectionof a single frame from the set detected for a given object is basedon filtering frames with a too low level of objectivity, and then the

Non-maximum Suppression method is used (Horzyk and Ergün,2020). YOLO v3 uses Darknet-53 containing 53 convolutional layersfor feature extraction. The algorithm uses consecutive 3x3 and 1x1convolutional layers, and the idea of residual networks to increasethe depth of the network and prevent a vanishing gradient. YOLOv3 trains the network by decreasing the loss function values by eval-uating the actual and predicted model values based on Equation (1)(Wang et al., 2022):

Loss = λcoord
S2∑

i=0
B∑

j=0
Iobj

ij

[(
xj

i – x̂j
i

)2 + (yj
i – ŷj
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i represent thepredicted and actual value of target probability.In addition, the prediction is based on three different scales todetect objects of different sizes, taking steps 32, 16, and 8 respec-tively. For example, the input image size of 416x416 will result ingrids of 13x13, 26x26, and 52x52 respectively. The fusion of func-tions is based on upsampling so that feature maps from all scaleshave the same size. Combining features from previous layers isperformed by concatenation (Ju et al., 2019; Xu et al., 2020). Theworkflow of the YOLO v3 algorithm is shown in (Figure 3).
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Figure 3. The framework of YOLOv3 neural network (based on An-driyanov et al. (2022))

Figure 4. Loss function in relation to the number of epochs

2.3 Vehicle detection

Before performing car detection on the set of images, it is neces-sary to prepare the neural network model. It is important that thetrained model allows for the correct detection of objects in imagesthat were not previously used in the training process. Therefore,at the initial stage of data preparation, photos obtained on 30thAugust 2018, using another UAV, were used. The database included50 images taken from a height of 100 m with a Flytech’s Birdieunmanned airframe. The UAV was equipped with a non-metricSony a6000 consumer-grade camera, with image resolution of6000x4000 pixels. The flight area covered the same road, but thephotos were characterized by different parameters resulting froma different camera model, time of day in which the flight was per-formed, higher flight speed, and different shutter type. This setof photos was chosen for the network training as it was necessaryto check whether the prepared model will work correctly even inthe case of using different equipment and flight parameters , suchas altitude or speed. Several to several dozen cars were capturedin each image, so despite having only 50 photos, the number ofsamples was much greater.The image database was divided into two groups: training (70%)and test (30%). The training samples varied in terms of colour androtation of the objects. The detector was trained for 100 epochs.The entire training process took over 3 hours and a mean Aver-age Precision (mAP) value of 83.755% was obtained. It could bepossible to increase the precision by using more samples (typi-cally several thousand samples are used in object detection studies).From a certain point, the loss function values become constant sofurther increasing the number of epochs would not improve theresult (Figure 4). However, the aim of this research is not to obtainthe best possible prediction accuracy, but to assess the impact ofcar masking on photogrammetric products, so it was decided thatsuch a value would be sufficient.

Figure 5. Original prediction converted into a binary mask image

Figure 6. Processing stages

The next stage was the detection of cars in the main dataset withthe use of the created model. In its predefined form, detected objectsare presented within rectangles assigned with a class descriptionand prediction accuracy. In order to enable using the results asmasks for further photogrammetric processing, it was necessaryto transform the original code in such a way that it would generatean artificial image with the same dimensions as the original imageand would transform it into a binary form, where the background is0 and the prediction regions are 1 (Figure 5 ). The detection processon the previously prepared model was quick, and for 216 photoswith several to several dozen cars, it took several minutes.
2.4 Photogrammetric processing

The study was divided into two separate projects, differentiatedonly by the use or absence of masks resulting from automatic detec-tion of cars in the images. The applied photogrammetric softwareuses the SfM-MVS algorithm. Due to the image acquisition with anon-metric camera, it was necessary to estimate the calibration pa-rameters; they were treated as unknowns during bundle adjustment(self-calibration). Other parameters such as approximate exteriororientation parameters, focal length, and sensor size were loadedautomatically based on EXIF files. The photogrammetric processconsisted of several steps. In the first stage, preliminary photoalignment was performed. This process consists of feature detec-tion, matching, and camera position estimation. All control pointswere then indicated on the images, 6 of them were selected as GCPsand the remaining 26 as check points used for accuracy analysisnot involved in the alignment process. The projection centres wereexcluded from the process due to the low accuracy of the onboardnavigation system. The next step was to perform camera param-eter optimisation and to georeference the model through bundleadjustment. Then, photogrammetric products, such as dense pointcloud, digital elevation model, and orthophotomap were generated.The processing workflow is presented in Figure 6.
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Figure 7. Histograms and Q-Q plots of deviations for X, Y, and Z coordinates

Table 1. RMSE values from accuracy assessment
RMSE X [m] RMSE Y [m] RMSE Z [m] Total RMSE [m]

0.021448 0.012693 0.040035 0.047158

Table 2. p - values of Shapiro-Wilk normality testing
X deviations Y deviations Z deviations

0.902 0.380 0.106

3 Results

3.1 Accuracy assessment

Masking of vehicles detected by the YOLO algorithm changes thecontent of the source data. For control reasons, the processingpipeline was run twice: for original images and for masked im-ages. All processes were performed on a computer with the follow-ing parameters: RAM 32 GB, Intel(R) Core(TM) i7-7700HQ CPU@ 2.80GHz, GeForce GTX 1050 GPU. The number of obtained tiepoints resulting from the SfM algorithm was 223359 for the vari-ant with masks and 221662 for the variant without masks. Thealignment time was similar for both scenarios - around 11 minutes.The time necessary to generate the dense point cloud, DEM, andorthophotomap was also similar – 1 hour 10 minutes in total. Theaccuracy was assessed based on RMSE values calculated on checkpoints from scenario with cars (Table 1).In order to further analyse the dispersion of deviations for X,Y, and Z coordinates, the Shapiro-Wilk normality test was used.According to the test assumptions, distribution is normal when thep-value reaches values greater than 0.05 (Shapiro and Wilk, 1965).The test was performed using a Python script. The distributionwas normal (Table 2). The distribution of deviations for X, Y, andZ coordinates presented in histograms and Q-Q plots is shown in(Figure 7).

Figure 8. Samples for analysis with the places where the sections weremade

3.2 Analysis of the generated products

The next stage constituted the main part of the research, i.e. theanalysis of generated photogrammetric products. First, a compar-ative analysis of DEM was conducted. The generated DEMs wereexported to the TIFF format and loaded into the QGIS program. Inboth scenarios, the products were created based on a dense pointcloud. In both cases, there were approximately 34 million points inthe point clouds . The generated DEMs had a size of 7949 x 13196pixels and resolution of 6.9 cm/pix. Then, using the Profile ToolGitHub repository (2022) by Borys Jurgiel and Patrice Verchere,cross-sections of the terrain were made in the areas with visiblecars. Samples were selected based on the orthophotomap generatedfor the variant without masks on which the cars were mapped. Thelocations of cross-sections are marked with a red line (Figure 8).
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Figure 9. DEM at locations marked as samples. From the top: samples1, 2, 3, 4, left without masking and right with masking

The choice of specific samples was based on the need to carryout the analysis in areas with the heaviest traffic, that is in thevicinity of crossroads and pedestrian crossings, which are includedin samples 1-3. Sample 4 covers an area of different characteristicswhere the number of cars is much smaller and they are constantlyin motion. A comparison of DEM grids for each of the samples inboth scenarios is shown in Figure 9.The resulting DEMs were visually assessed at sample locations.In all samples, the effect of car masking on the quality of the re-sulting product can be seen. DEMs based on masked images arenoticeably smoother. In sample 1, the variant without maskingmakes the cars visible in the right-hand lane of the road. The vari-ant with masking smoothed the street surface in this area. Forsample 3, it was necessary to limit the DEM extent due to signif-icant errors in the areas covered by water. The roadway area hasbecome noticeably smoother and more consistent after masking. Insample 2, the errors can be seen on the DEM with masking becausethere were too few images without cars to obtain information aboutthe area underneath them. The region covered by sample 2 waslocated at the beginning of the study area so the number of imagescovering this part was much smaller. Sample 4 presents a regionwith a small number of cars in motion. The result before and aftermasking for this area is similar. The graphs presented in Figure 10show the course of the terrain line for each of the cross-sections inthe samples. Variant without masks is marked in yellow, while thered colour indicates the variant with masks.In the next stage, the generated orthophotomaps were com-pared. For both scenarios, the size of resulting products was25244x42404 pixels with the resolution of 1.73 cm/pix. The ob-tained orthophotomaps were loaded into the QGIS program, wherethe effect of applying masks was visually assessed. Fragments ofthe orthophotomaps obtained with and without masks are shownin Figure 11. The cars moving in the course of taking successiveimages may cause the blur effect. Changing the position of an object

Figure 10. Cross-sections through the DEM made without masking thecars (yellow) and made with masks (red), from top: sample1,2,3,4; x axis: distance in m, y axis: height above sea level

makes it partially skipped or visible as a streak. This phenomenonis clearly visible on the orthophotomap generated without maskingthe cars. In a traditional form of processing, it is necessary to re-move such artefacts manually by marking them into polygons andreplacing them with areas extracted from a different image. Theresult obtained by automatically masking the cars shows that thisprocess can be done fully automatically without operator interven-tion.

4 Discussion

The literature review shows that there is limited research on themasking of cars in images for photogrammetric processing of UAVdata. Yang et al. conducted a study concerning automatic maskingof moving cars (Yang et al., 2021). The research aimed to presenta method for recognising and removing cars and combining it with3D reconstruction, thus eliminating errors related to the geom-etry and texturing of cars within roads, which can be of utmostimportance when creating smart cities. The results show that theproposed method mitigates problems occurring in urban scenes.High automation is an additional advantage. However, the paperanalyses 3D modelling and texture overlay. The presented researchextends previous findings by analysing the effect of masking onDEM and orthophotomap improvement for photogrammetric roadmeasurements. Design and monitoring require reliable informationconcerning the area under study. The presence of cars in the imagesis partly eliminated by the RANSAC algorithm, but in the case ofheavy traffic, there are residual errors in a dense point cloud andfurther products such as DEMs and orthophotomaps. Cars are notan integral part of the landscape so including them in photogram-metric products is unnecessary. In addition, when the locationof objects changes between successive photographs, it causes theblurring effect, which is visible on the orthophotomap.The results showed that masking the cars does not affect the pro-cessing accuracy. The number of obtained tie points also remains ata similar level, so it can be concluded that removing cars from theimages does not disturb the process of feature search and matchingalgorithms. The processing time has not increased either. Masking,on the other hand, allows for the removal of unnecessary artefactsfrom a DEM, as shown in samples 1-3. In the case of less congestedareas where single cars were visible, it is not necessary to maskthem because they are removed by the SfM algorithm, as shownin sample 4. The problematic areas are those of heavy traffic andslow movement, for example in the vicinity of crossroads, traffic
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Figure 11. Comparison of the orthophotomaps generated without auto-matic masking (left) and with automatic masking (right)

lights, and pedestrian crossings. The analysis of the obtained or-thophotomaps shows that the use of automatic masking allows forthe complete elimination of the need to manually remove artefactsfrom the final product. The full automation and speed of detectionallow for obtaining improved product quality without increasingthe time required to process the data, which is a serious disadvan-tage of manual masking or artefact cleaning. The trained modelwas based on a small number of training and test images, futureresearch may include a much larger number of samples to improveprediction accuracy. Additionally, only one class "cars" was consid-ered in the algorithm. Other objects such as bicycles, motorbikes, orbuses were not taken into account. In future research, it is possibleto extend the obtained model to include additional object classes.

5 Conclusions

The research aimed to demonstrate that automatic masking of carsin images acquired with UAVs can positively affect the quality ofphotogrammetric products. A digital elevation model generatedfrom a dense point cloud and an orthophotomap were analysed.To achieve the research objectives, automatic car detection wasperformed using the state-of-the-art object detection YOLO v3 al-gorithm, and the results were then processed into masks. The dataprepared in this way were subjected to photogrammetric processingin two scenarios: with and without masks covering the cars. Theaccuracy analysis was based on the RMS errors of the coordinatesread on check points in both scenarios. In addition, Shapiro-Wilknormality tests were performed. The accuracy assessment showsthat masking cars in the images has no effect on the final accuracy.This is due to the small number of incorrectly designated tie pointsin relation to their total number. The main part of the study was acomparative analysis of photogrammetric products generated fromboth scenarios. The analysis of DEM and orthophotomap showsthat masking the cars can improve the quality of the final prod-ucts. Performing photogrammetric flights over busy roads involvescapturing numerous cars, which are then transferred as erroneousfragments to photogrammetric products. By using masking, it ispossible to eliminate their influence at the beginning of the align-ment without the need to manually interfere with the resultingproducts. In addition, the use of automatic detection significantly

reduces the time required for processing. The trained network canbe useful not only in the project from which the images were ac-quired for training but also in studies done with a different UAV,camera, flight altitude, and ground sample distance. The modelobtained in the study was trained using a small database of imagesfrom another flight (50 images). Despite the small test and train-ing database, detection accuracy of 83 % was achieved, which issufficient to highlight the differences between the process withoutand with masks.
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