PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Glass-ceramic materials : influence of fluoride nanocrystals on emission properties of lanthanide ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the oxyfluoride glass-ceramic materials containing LaF3 nanocrystals, prepared by using the sol-gel method, were described. The influence of fluoride nanocrystals on the photoluminescence properties of selected lanthanide ions was determined. The experimental results obtained for nano-glass-ceramics were compared to the precursor xerogels. Those Ln3+-doped sol-gel materials with dispersed LaF3 nanocrystals exhibit several visible emission bands. It was observed that heat-treatment process caused the elongation of the lifetimes of the 5D0 state from τ = 0.22 ms to τ1 = 0.79 ms, τ2 = 9.76 ms (for Eu3+-doped materials) and of the 4F9/2 state from τ = 0.027 ms to τ1 = 0.034 ms, τ2 = 1.731 ms (for Dy3+‑doped materials). The performed studies clearly revealed that luminescence behaviour also depends on an activator concentration and a distribution of energy levels of lanthanide ions.
Rocznik
Strony
art. no. e152680
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-007 Katowice, Poland
  • Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-007 Katowice, Poland
  • Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-007 Katowice, Poland
  • Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40‐007 Katowice, Poland
Bibliografia
  • [1] Beall, G. H. Dr. S. Donald (Don) Stookey (1915–2014): Pioneering Researcher and Adventurer. Front. Mater. 3, 37 (2016). https://doi.org/10.3389/fmats.2016.00037
  • [2] Beall, G. H. & Duke, D. A. Transparent glass-ceramics. J. Mater. Sci. 4, 340–352 (1969). https://doi.org/10.1007/BF00550404
  • [3] Beall, G. H. & Pinckney, L. R. Nanophase glass-ceramics. J. Am. Ceram. Soc. 82, 5–16 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01716.x
  • [4] Beall, G. H. Milestones in glass-ceramics: A personal perspective. Int. J. Appl. Glass Sci. 5, 93–103 (2014). https://doi.org/10.1111/ijag.12063
  • [5] Sakamoto, A. & Yamamoto, S. Glass-ceramics: Engineering principles and applications. Int. J. Appl. Glass Sci. 1, 237–247 (2010). https://doi.org/10.1111/j.2041-1294.2010.00027.x
  • [6] Sołtys, M., Górny, A., Pisarska, J. & Pisarski, W. A. Electrical and optical properties of glasses and glass-ceramics. J. Non-Cryst. Solids 498, 352–363 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.03.033
  • [7] Soares, V. O. et al. Highly translucent nanostructured glass-ceramic. Ceram. Int. 47, 4707–4714 (2021). https://doi.org/10.1016/j.ceramint.2020.10.039
  • [8] Zanotto, E. D. A bright future for glass-ceramics. Am. Ceram. Soc. Bull. 89, 19–27 (2010). https://ceramics.org/wp-content/uploads/2010/09/bulletin_oct-nov2010.pdf
  • [9] Montazerian, M., Singh, S. P. & Zanotto, E. D. An analysis of glass–ceramic research and commercialization. Am. Ceram. Soc. Bull. 94, 30–35 (2015). https://lamav.weebly.com/uploads/5/9/0/2/5902800/an_analysis_of_glass-ceramic.pdf
  • [10] Deubener, J. et al. Updated definition of glass-ceramics. J. Non-Cryst. Solids 501, 3–10 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.01.033
  • [11] Gonçalves, M. C., Santos, L. F. & Almeida, R. M. Rare-earth-doped transparent glass ceramics. C. R. Chim. 5, 845–854 (2002). https://doi.org/10.1016/S1631-0748(02)01457-1
  • [12] Ren, J., Lu, X., Lin, C. & Jain, R. K. Luminescent ion-doped transparent glass ceramics for mid-infrared light sources. Opt. Exp. 28, 21522–21548 (2020). https://doi.org/10.1364/OE.395402
  • [13] Pisarski, W. A. et al. Rare earth-doped lead borate glasses and transparent glass-ceramics: Structure–property relationship. Spectrochim. Acta A 79, 696–700 (2011). https://doi.org/10.1016/j.saa.2010.04.022
  • [14] Marcondes, L. M. et al. Er3+-doped niobium alkali germanate glasses and glass-ceramics: NIR and visible luminescence properties. J. Non-Cryst. Solids 521, 119492 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119492
  • [15] Lahoz, F. et al. Rare earths in nanocrystalline glass-ceramics. Opt. Mater. 27, 1762–1770 (2005). https://doi.org/10.1016/j.optmat.2004.11.047
  • [16] Li, Z. et al. The transformation from translucent into transparent rare earth ions doped oxyfluoride glass-ceramics with enhanced luminescence. Adv. Opt. Mater. 10, 2102713 (2022). https://doi.org/10.1002/adom.202102713
  • [17] Cruz, M. E. et al. Rare-earth doped transparent oxyfluoride glass-ceramics: processing is the key. Opt. Mater. Exp. 12, 3493–3516 (2022). https://doi.org/10.1364/OME.462684
  • [18] Patra, P. et al. The effect of rare earth (RE3+) ionic radii on transparent lanthanide-tellurite glass-ceramics: correlation between ‘hole-formalism’ and crystallization. Mater. Adv. 4, 2667–2682 (2023). https://doi.org/10.1039/D3MA00036B
  • [19] Yuhang, X. et al. Luminescence properties of Eu3+ doped BaMoO4 transparent glass ceramics. J. Non-Cryst. Solids 500, 243–248 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.08.007
  • [20] Desirena, H. et al. Eu3+ heavily doped tellurite glass ceramic as an efficient red phosphor for white LED. J. Lumin. 250, 11980 (2022). https://doi.org/10.1016/j.jlumin.2022.119080
  • [21] Bondzior, B., Hoang, T. & Petit, L. Crystal formation in Eu3+-Doped oxyfluorophosphate glass-ceramics for luminescence thermometry. Ceram. Int. 49, 41186–41193 (2023). https://doi.org/10.1016/j.ceramint.2023.04.155
  • [22] Wang, L. et al. Luminescence properties of Dy3+ doped glass ceramics containing Na3Gd(PO4)2. J. Non-Cryst. Solids 543, 120091 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120091
  • [23] Yan, Y. et al. Preparation and luminescence of Dy3+ doped glass-ceramics containing ZnMoO4. J. Non-Cryst. Solids 569, 120990 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120990
  • [24] Jia, F. et al. Effect of Mg2+/Sr2+ addition on luminescence properties of Dy3+ doped glass ceramics containing Ca2Ti2O6. Opt. Mater. 131, 112715 (2022). https://doi.org/10.1016/j.optmat.2022.112715
  • [25] Bu, Y. Y, Cheng, S. J., Wang, X. F. & Yan, X. H. Optical thermometry based on luminescence behavior of Dy3+-doped transparent LaF3 glass ceramics. Appl. Phys. A 121, 1171–1178 (2015). https://doi.org/10.1007/s00339-015-9483-7
  • [26] Lee, H., Chung, W. J. & Im, W. B. Pr3+-doped oxyfluoride glass ceramic as a white LED color converter wide color gamut. J. Lumin. 236, 118064 (2021). https://doi.org/10.1016/j.jlumin.2021.118064
  • [27] Chen, Z. et al. Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation. Adv. Opt. Mater. 6, 1700787 (2018). https://doi.org/10.1002/adom.201700787
  • [28] Hu, X. et al. Opposite temperature luminescent behaviours of Tb3+ and Pr3+ co-doped BaMoO4 glass ceramics for temperature sensing. J. Lumin. 236, 118080 (2021). https://doi.org/10.1016/j.jlumin.2021.118080
  • [29] Liu, W. et al. Structure and luminescence of Pr3+-doped oxyfluoride glass-ceramics containing Na5Y9F32:Pr3+ nanocrystals. J. Lumin. 267, 120404 (2024). https://doi.org/10.1016/j.jlumin.2023.120404
  • [30] Zhang, W. J. et al. Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic. Opt. Mater. Exp. 2, 636–643 (2012). https://doi.org/10.1364/OME.2.000636
  • [31] Chen, D., Wang, Y., Yu, Y. & Ma, E. Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals. Mater. Chem. Phys. 101, 464–469 (2007). https://doi.org/10.1016/j.matchemphys.2006.08.005
  • [32] Tanabe, S., Hayashi, H., Hanada, T. & Onodera, N. Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals. Opt. Mater. 19, 343–349 (2002). https://doi.org/10.1016/S0925-3467(01)00236-1
  • [33] Chen, Z. et al. Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation. J. Phys. Chem. C 119, 24056–24061 (2015). https://doi.org/10.1021/acs.jpcc.5b08103
  • [34] Chen, Z. et al. Near-infrared wavelength-dependent nonlinear transmittance tailoring in glass ceramics containing Er3+:LaF3 nanocrystals. J. Mater. Chem. C 4, 6707–6712 (2016). https://doi.org/10.1039/C6TC01876A
  • [35] Gorni, G. et al. 80SiO2-20LaF3 oxyfluoride glass ceramic coatings doped with Nd3+ for optical applications. Int. J. Appl. Glass Sci. 9, 208–217 (2018). https://doi.org/10.1111/ijag.12338
  • [36] Sedano, M. et al. Luminescence of Nd3+-doped LaF3 glass-ceramics enhanced with Ag nanoparticles. J. Eur. Ceram. Soc. 44, 2427–2436 (2024). https://doi.org/10.1016/j.jeurceramsoc.2023.11.029
  • [37] Xu, Y. et al. Efficient near-infrared down-conversion in Pr3+-Yb3+ codoped glasses and glass ceramics containing LaF3 nanocrystals. J. Phys. Chem. C 115, 13056–13062 (2011). https://doi.org/10.1021/jp201503v
  • [38] Secu, M., Secu, C. & Bartha, C. Optical properties of transparent rare-earth doped sol-gel derived nano-glass ceramics. Materials 14, 6871 (2021). https://doi.org/10.3390/ma14226871
  • [39] Rodriguez, V. D. et al. Luminescence of Er3+-doped nanostructured SiO2-LaF3 glass-ceramics prepared by the sol-gel method. Opt. Mater. 29, 1557–1561 (2007). https://doi.org/10.1016/j.optmat.2006.06.022
  • [40] Cruz, M. E. et al. A new sol-gel route towards Nd3+-doped SiO2–LaF3 glass-ceramics for photonic applications. Mater. Adv. 1, 3589–3596 (2020). https://doi.org/10.1039/d0ma00708k
  • [41] Pawlik, N., Szpikowska-Sroka, B., Pietrasik, E., Goryczka, T. & Pisarski, W. A. Structural and luminescence properties of silica powders and transparent glass-ceramics containing LaF3:Eu3+ nanocrystals. J. Am. Ceram. Soc. 101, 4654–4668 (2018). https://doi.org/10.1111/jace.15728
  • [42] Pawlik, N., Goryczka, T., Pietrasik, E., Śmiarowska, J. & Pisarski, W. A. Photoluminescence investigations of Dy3+-doped silicate xerogels and SiO2-LaF3 nano-glass-ceramic materials. Nanomaterials 12, 4500 (2022). https://doi.org/10.3390/nano12244500
  • [43] Pawlik, N., Goryczka, T., Zubko, M., Śmiarowska, J. & Pisarski, W. A. White light and near-infrared emissions of Pr3+ ions in SiO2- LaF3 sol-gel nano-glass-ceramics. Nanoscale 16, 4249–4265 (2024). https://doi.org/10.1039/d3nr04030e
  • [44] Hémono, N. et al. Processing of transparent glass-ceramics by nanocrystallisation of LaF3. J. Eur. Ceram. Soc. 29, 2915–2920 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.05.013
  • [45] de Pablos-Martín, A. et al. Crystallization kinetics of LaF3 nanocrystals in an oxyfluoride glass. J. Am. Ceram. Soc. 94, 2420–2428 (2011). https://doi.org/10.1111/j.1551-2916.2011.04547.x
  • [46] D’Angelo, P. et al. Revised ionic radii of lanthanoid(III) ions in aqueous solution. Inorg. Chem. 50, 4572–4579 (2011). https://doi.org/10.1021/ic200260r
  • [47] Pisarski, W. A., Żur, L. & Pisarska, J. Optical transitions of Eu3+ and Dy3+ ions in lead phosphate glasses. Opt. Lett. 36, 990–992 (2011). https://doi.org/10.1364/OL.36.000990
  • [48] Pisarski, W. A., Pisarska, J., Żur, L. & Goryczka, T. Structural and optical aspects for Eu3+ and Dy3+ ions in heavy metal glasses based on PbO-Ga2O3-XO2 (X = Te, Ge, Si). Opt. Mater. 35, 1051–1056 (2013). https://doi.org/10.1016/j.optmat.2012.12.012
  • [49] Kłonkowski, A. M., Wiczk, W., Ryl, J., Szczodrowski, K. &Wileńska, D. A white phosphor based on oxyfluoride nano-glassceramics co-doped with Eu3+ and Tb3+: Energy transfer study. J. Alloys Compd. 724, 649–658 (2017). https://doi.org/10.1016/j.jallcom.2017.07.055
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-951b0715-6ba7-471e-a37f-a563b37f7ee2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.