PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Positioning Accuracy Based on the UWB Technology for an Object on Circular Trajectory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the comparison of filtering methods – median filtration, moving average Kalman filtration and filtration based on a distance difference to determine the most accurate arm length for circular motion, as a model of wind turbine propellers movement. The experiments have been performed with the UWB technology system containing four anchors and a tag attached to 90 cm arm that was rotated with speed up to 15.5 rad/s (as a linear speed of 50 km/h). The trilateration concept based on the signal latency has been described in order to determinate the position of an object on circular trajectory. The main objective is the circle plane rotation (parallel and perpendicular) with respect to the anchors plane reference system. All research tasks have been performed for various cases of motion schemes in order to get the filtration method for object in motion under best accuracy goal. Filtration methods have been applied on one of two stages of the positioning algorithm: (1) on raw data got from the single anchor-tag (before trilateration); (2) on the position obtained from four anchors and tag (after trilateration). It has been proven that the appropriate filtering allows for higher location accuracy. Moreover, location capabilities with the use of UWB technology – shows prospective use of positioning of objects without access to other positioning forms (ex. GPS) in many aspects of life such as currently developing renewable, green energy sources like wind turbines where the circular motion plays an important role, and precise positioning of propellers is a key element in monitoring the work of the whole wind turbine.
Rocznik
Strony
487--494
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
autor
  • Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] Aalto L, Göthlin N, Korhonen J, Ojala T. Bluetooth and WAP Push Based Location-aware Mobile Advertising System. Proc. 2Nd Int. Conf. Mob. Syst. Appl. Serv., New York, NY, USA: ACM; 2004, p. 49–58. doi:10.1145/990064.990073.
  • [2] Ziebinski A, Cupek R, Erdogan H, Waechter S. A Survey of ADAS Technologies for the Future Perspective of Sensor Fusion. Comput. Collect. Intell., Springer, Cham; 2016, p. 135–46. doi:10.1007/978-3-319-45246-3_13.
  • [3] Mautz R. Indoor positioning technologies. Habilit Thesis 2012. doi:10.3929/ethz-a-007313554.
  • [4] Baheti R, Gill H. Cyber-physical systems. Impact Control Technol 2011;12:161–6.
  • [5] Pittet S, Renaudin V, Merminod B, Kasser M. UWB and MEMS Based Indoor Navigation. J Navig 2008;61:369–84. doi:10.1017/ S0373463308004797.
  • [6] Budniak K, Tokarz K, Grzechca D. Practical Verification of Radio Communication Parameters for Object Localization Module. Man–Machine Interact. 4, Springer, Cham; 2016, p. 487–98. doi:10.1007/978-3-319-23437-3_41.
  • [7] Nurminen H, Dashti M, Piché, Robert. A Survey on Wireless Transmitter Localization Using Signal Strength Measurements. Wirel Commun Mob Comput 2017. doi:10.1155/2017/2569645.
  • [8] Alarifi A, Al-Salman A, Alsaleh M, Alnafessah A, Al-Hadhrami S, Al-Ammar M, et al. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016;16:707. doi:10.3390/s16050707.
  • [9] Wang X, Xu K, Li Z. SmartFix: Indoor Locating Optimization Algorithm for Energy-Constrained Wearable Devices. Wirel Commun Mob Comput 2017. doi:10.1155/2017/8959356.
  • [10] Luo J-N, Yang M-H. Unchained Cellular Obfuscation Areas for Location Privacy in Continuous Location-Based Service Queries. Wirel Commun Mob Comput 2017. doi:10.1155/2017/7391982.
  • [11] Chruszczyk Ł, Zając A, Grzechca D. Comparison of 2.4 and 5 GHz WLAN Network for Purpose of Indoor and Outdoor Location. Int J Electron Telecommun 2016;62. doi:10.1515/eletel-2016-0010.
  • [12] Grzechca D, Pelczar P, Chruszczyk Ł. Analysis of Object Location Accuracy for iBeacon Technology based on the RSSI Path Loss Model and Fingerprint Map. Int J Electron Telecommun 2016;62:371–8.
  • [13] Ni LM, Liu Y, Lau YC, Patil AP. LANDMARC: Indoor Location Sensing Using Active RFID. Wirel Netw 2004;10:701–10. doi:10.1023/B:WINE.0000044029.06344.dd.
  • [14] Mautz R. Overview of current indoor positioning systems. Geod Cartogr 2009;35:18–22. doi:10.3846/1392-1541.2009.35.18-22.
  • [15] Haraz O. Why do we need Ultra-wideband? (1). VLSI-Egypt 2012. http://www.vlsiegypt.com/home/?p=518 (accessed July 8, 2017).
  • [16] Grzechca D, Tokarz K, Paszek K, Poloczek D. Using MEMS Sensors to Enhance Positioning When the GPS Signal Disappears. Comput. Collect. Intell., Springer, Cham; 2017, p. 260–71. doi:10.1007/978-3-319-67077-5_25.
  • [17] Grzechca D, Wrobel T, Bielecki P. Indoor localization of objects based on RSSI and MEMS sensors, 2014, p. 143–6. doi:10.1109/ISCIT.2014.7011888.
  • [18] Dardari D, Decarli N, Guerra A, Al-Rimawi A, Puchades V, Marí C, et al. High-Accuracy Tracking Using Ultrawideband Signals for Enhanced Safety of Cyclists. Mob Inf Syst 2017. doi:10.1155/2017/8149348.
  • [19] Bernardin K, Stiefelhagen R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. EURASIP J Image Video Process 2008;2008:246309. doi:10.1155/2008/246309.
  • [20] Constandache I, Bao X, Azizyan M, Choudhury RR. Did You See Bob?: Human Localization Using Mobile Phones. Proc. Sixt. Annu. Int. Conf. Mob. Comput. Netw., New York, NY, USA: ACM; 2010, p. 149–160. doi:10.1145/1859995.1860013.
  • [21] Yang P, Wu W, Moniri M, Chibelushi CC. Efficient Object Localization Using Sparsely Distributed Passive RFID Tags. IEEE Trans Ind Electron 2013;60:5914–24. doi:10.1109/TIE.2012.2230596.
  • [22] Agrawal M, Konolige K. Real-time Localization in Outdoor Environments using Stereo Vision and Inexpensive GPS. 18th Int. Conf. Pattern Recognit. ICPR06, vol. 3, 2006, p. 1063–8. doi:10.1109/ICPR.2006.962.
  • [23] Pescaru D, Curiac D-I. Anchor Node Localization for Wireless Sensor Networks Using Video and Compass Information Fusion. Sensors 2014;14:4211–24. doi:10.3390/s140304211.
  • [24] Lehtinen M, Happonen A, Ikonen J. Accuracy and time to first fix using consumer-grade GPS receivers. 2008 16th Int. Conf. Softw. Telecommun. Comput. Netw., 2008, p. 334–40. doi:10.1109/SOFTCOM.2008.4669506.
  • [25] Murray CC, Chu AG. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transp Res Part C Emerg Technol 2015;54:86–109. doi:10.1016/j.trc.2015.03.005.
  • [26] Grzechca D, Komorowski D, Pietraszek S. A Universal Wireless Device for Biomedical Signals Recording. Pervasive Mob. Sens. Comput. Healthc., Springer, Berlin, Heidelberg; 2013, p. 157–74. doi:10.1007/978-3-642-32538-0_7.
  • [27] Song U-K, Kim B-K. Development of a DGPS-Based Localization and Semi-Autonomous Path Following System for Electric Scooters. J Inst Control Robot Syst 2011; 17:674–84. doi:10.5302/J.ICROS. 2011.17.7.674.
  • [28] Trulls E, Corominas Murtra A, Pérez-Ibarz J, Ferrer G, Vasquez D, Mirats-Tur JM, et al. Autonomous navigation for mobile service robots in urban pedestrian environments. J Field Robot 2011;28:329–54. doi:10.1002/rob.20386.
  • [29] ScenSor Module DWM1000 - WSN | decaWave n.d. https://www.decawave.com/products/dwm1000-module (accessed October 19, 2017).
  • [30] Abdelmoumen Norrdine. An Algebraic Solution to the Multilateration Problem 2015. doi:10.13140/RG.2.1.1681.3602.
  • [31] Premebida C, Nunes U. Segmentation and geometric primitives extraction from 2D laser range data for mobile robot applications. Robotica 2005;2005.
  • [32] Breckon T. 2D Target tracking using Kalman filter. 2016.
Uwagi
1. This work was supported by the Ministry of Science and Higher Education funding for young researchers statutory activities in 2018 (BKMN 2018).
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-951ae328-2d4e-4f47-a073-f7a636338136
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.