Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Green energy transformation requires comprehensive strategies that include both innovations in energy production and more efficient energy use. This article investigates the potential for saving electrical energy in industrial automation systems by utilizing bistable switching/relay. Compared to traditional systems, these innovative solutions demonstrate significant reductions in energy consumption. A market analysis of available bistable relays, along with experimental determination of their control conditions, highlights their application potential and indicates the benefits of their implementation. The findings suggest that replacing classical relays with their bistable counterparts could significantly contribute to global sustainability efforts. The article presents the process of redesigning a standard industrial relay into a bistable design. Adding two additional elements achieved the intended bistable functionality. The article calls for increased research and investment in such technologies, emphasizing that the energy-saving potential offered by bistable switching/relay circuits should not be overlooked.
Rocznik
Tom
Strony
art. no. e151679
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- University of Zielona Góra, Licealna 9, 65-417 Zielona Góra
- RELPOL S.A., ul. 11 Listopada 37, 62-100 Zary, Poland
Bibliografia
- [1] European Parliament and the EU Council, “Commission regulation (EU) No 548/2014 of 21 may 2014, with regard to small, medium and large power transformers.” [Online]. Available: http://data.europa.eu/eli/reg/2014/548/oj
- [2] European Parliament and the EU Council, “Commission regulation (ec) no 1275/2008 of 17 december 2008 implementing directive 2005/32/ec of the European Parliament and of the council with regard to ecodesign requirements for standby and off mode electric power consumption of electrical and electronic household and office equipment (text with eea relevance).” [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32008R1275
- [3] T.-W. Lee and D.-K. Hong, “Electrical and mechanical characteristics of a high-speed motor for electric turbochargers in relation to eccentricity,” Energies, vol. 14, no. 11, p. 3340, 2021, doi: 10.3390/en14113340.
- [4] T. Ghandriz, B. Jacobson, M. Islam, J. Hellgren, and L. Laine, “Transportation-mission-based optimization of heterogeneous heavy-vehicle fleet including electrified propulsion,” Energies, vol. 14, no. 11, p. 3221, 2021, doi: 10.3390/en14113221.
- [5] M. Farzam Far et al., “Modular and scalable powertrain for multipurpose light electric vehicles,” World Electric Vehicle Journal, vol. 14, no. 11, p. 309, 2023, doi: 10.3390/wevj14110309.
- [6] R. Sidełko, “Application of technological processes to create a unitary model for energy recovery from municipal waste,” Energies, vol. 14, no. 11, p. 3118, 2021, doi: 10.3390/en14113118.
- [7] M. Schweizer and J.W. Kolar, “High efficiency drive system with 3-level t-type inverter,” in Proceedings of the 2011 14th European Conference on Power Electronics and Applications. IEEE, 2011, pp. 1–10.
- [8] A. De Almeida, P. Bertoldi, and W. Leonhard, Energy efficiency improvements in electric motors and drives. Springer Science & Business Media, 2012.
- [9] M. Hasanuzzaman, N. Rahim, M. Hosenuzzaman, R. Saidur, I. Mahbubul, and M. Rashid, “Energy savings in the combustion based process heating in industrial sector,” Renew. Sust. Energ. Rev., vol. 16, no. 7, pp. 4527–4536, 2012.
- [10] N. Gabdullin and J.-S. Ro, “Energy-efficient eco-friendly zero-holding-energy magnetic contactor for industrial and vehicular applications,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5000–5011, 2020, doi: 10.1109/TVT.2020.2981888.
- [11] D. Efanov, A. Lykov, and G. Osadchy, “Testing of relay-contact circuits of railway signalling and interlocking,” in 2017 IEEE East-West Design & Test Symposium (EWDTS). IEEE, 2017, pp. 1–7, doi: 10.1109/EWDTS.2017.8110095.
- [12] F. Bădău, V.A. Stan, and R.A. Gheorghiu, “Energy efficiency analysis of relay railway interlockings,” in 2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 2023, pp. 1–4, doi: 10.1109/ECAI58194.2023.10193972.
- [13] Weiwei Fan and Shihua Wu, “Ship mechanical environment impact on the performance of electromagnetic relay,” in Proceeding of the 11th World Congress on Intelligent Control and Automation. IEEE, 2014, pp. 3702–3706, doi: 10.1109/WCICA.2014.7053332.
- [14] S. Nakamura et al., “Cryogenic operation of electromechanical relay for reversal of quantized current generated by a single-electron pump,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–9, 2023, doi: 10.1109/TIM.2023.3290995.
- [15] Q. Li, Y. Lin, S. Wang, S. Wang, and X. Zhu, “Storage life prediction method of the aerospace electromagnetic relays based on physics of failure and data-driven fusion,” IEEE Access, vol. 10, pp. 103 303–103 314, 2022, doi: 10.1109/ACCESS.2022.3209205.
- [16] I. Marozau et al., “Reliability assessment of miniaturised electromechanical RF relays for space applications,” Microelectron. Reliab., vol. 138, p. 114753, 2022, doi: 10.1016/j.microrel.2022.114753.
- [17] C.M. Ewuntomah and J. Oberrath, “3d simulation of electric arcing and pressure increase in an automotive HVDC relay during a short circuit situation,” in 2020 IEEE 66th Holm Conference on Electrical Contacts and Intensive Course (HLM). IEEE, 2020, pp. 58–64, doi: 10.1109/HLM49214.2020.9307918.
- [18] T. Aoki, K. Hamada, K. Yoshida, and K. Sawa, “Technical trends and international standardization activities in electromagnetic relays for control systems,” IEICE Trans. Electron., vol. E102.C, no. 9, pp. 628–635, 2019, doi: 10.1587/transele.2019EMI0001.
- [19] D. Smugala, “Switching-on operation of an electromagnetic relays optimization using a phase control approach,” IEEE Trans. Ind. Electron, vol. 68, no. 7, pp. 6152–6160, 2021, doi: 10.1109/tie.2020.3000132.
- [20] C. Zhang, Z. Zheng, W. Ren, J. Liu, and X. Liu, “Contact welding failure analysis of micro electromagnetic relays in electrical endurance experiments,” J. Fail. Anal. Preven., vol. 24, no. 1, pp. 380–390, 2024, doi: 10.1007/s11668-023-01846-x.
- [21] X. Wang and X. Su, “Influence of contact circuit of magnetic latching relay on magnetic latching force,” in 2019 6th International Conference on Systems and Informatics (ICSAI), 2019, pp. 355–359.
- [22] S. Fu, G. Ding, H. Wang, Z. Yang, and J. Feng, “Design and fabrication of a magnetic bi-stable electromagnetic mems relay,” Microelectron. J., vol. 38, no. 4 Special Issue of the 6th International Symposium on Quality Electronic Design (ISQED) March 21-23 San Jose, CA, pp. 556–563, 2007, doi: 10.1016/j.mejo.2007.03.015.
- [23] A. Inc, “Relay and industrial control global market report 2020.” [Online]. Available: https://www.researchandmarkets.com
- [24] Y. Zaytsev, A. Mikhailov, E. Mikhailova, N. Nikolaev, V. Petrov, and D. Sazanov, “Analysis of small intermediate relays from leading manufacturers,” E3S Web Conf., vol. 220, p. 01062, 2020, doi: 10.1051/e3sconf/202022001062.
- [25] L. Liu, Z. Chen, W. Yang, G. Zhai, E. Zio, and R. Kang, “A novel methodology for the optimization of design parameters of electromagnetic relays,” Nonlinear Dyn., vol. 112, no. 4, pp. 2909–2932, 2024. [Online]. Available: https://link.springer.com/10.1007/s11071-023-09189-w (Accessed 2024-06-28).
- [26] L. Kolimas, S. Łapczyński, M. Szulborski, and M. Świetlik, “Low voltage modular circuit breakers: FEM employment for modelling of arc chambers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, pp. 61–70, 2020, doi: 10.24425/bpasts.2020.131837.
- [27] S. Berhausen and S. Paszek, “Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 3, pp. 575–582, 2015, doi: 10.1515/bpasts-2015-0067.
- [28] J. Bernat, S. Stępień, A. Stranz, G. Szymański, and J. Sykulski, “Infinite time horizon optimal current control of a stepper motor exploiting a finite element model,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 4, pp. 835–841, 2014, doi: 10.2478/bpasts-2014-0092.
- [29] L. Tang and S. Luan, “Cosimulation of bistable permanent magnet circuit breakers,” IEEE Trans. Ind. Electron., vol. 71, no. 3, pp. 2800–2809, 2024, doi: 10.1109/TIE.2023.3265049.
- [30] X. Fan, Y. Zheng, and X. Zhang, “Simulation analysis of static characteristics of electromagnetic mechanism of magnetic holding relay based on ANSYS,” J. Phys.- Conf. Ser., vol. 1550, no. 4, p. 042067, 2020, doi: 10.1088/1742-6596/1550/4/042067.
- [31] A. Inc, “Ansys maxwell training manual : Static magnetic solvers,” pp. 1–28, 2013.
- [32] B. Gergič and D. Hercog, “Design and implementation of a measurement system for high-speed testing of electromechanical relays,” Measurement, vol. 135, pp. 112–121, 2019, doi: 10.1016/j.measurement.2018.11.028.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-951a480c-c8f4-48fb-a2c9-ef3de1d9d709
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.