PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacturing and characterization of resorbable PLGA membranes for biomedical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Porous poly(L-lactide-co-glycolide) (PLGA) membranes were prepared by solvent-casting/porogen leaching method. Poly(ethylene-glycol) (PEG) with two molecular weights was used as a pore former. Mechanical properties of the membranes were analyzed in tensile test. Topography, pore size and surface roughness were characterized by atomic force microscopy on both sites of the membranes. PEG leached out percentage, thickness and wettability were also measured. Osteoblast-like cells were cultured on the membranes for 24 h and 6 days, and morphology, distribution and number of adhered cells as well as secretion of proteins and nitric oxide were measured. The results show that PEG molecular weight affected size and distribution of pores on both surfaces of the membranes. It resulted also in different mechanical characteristics of the membranes. In vitro experiments show that the membranes support adhesion and growth of osteoblast-like cells suggesting their usefulness for guided tissue regeneration (GTR).
Słowa kluczowe
Rocznik
Strony
8--13
Opis fizyczny
Bibliogr. 26 poz., tab., wykr., zdj.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • FEUP – University of Porto, Faculty of Engineering, Rua Dr. Roberto Frias, S/N 4200-465 Porto, Portugal
autor
  • FEUP – University of Porto, Faculty of Engineering, Rua Dr. Roberto Frias, S/N 4200-465 Porto, Portugal
  • Jagiellonian University, Collage of Medicine, Department of Pedodontics, ul. Montelupich 4, 31-155 Krakow, Poland
  • Polish Academy of Sciences, Center of Polymer and Carbon Materials ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
autor
  • AGH University of Science And Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Ulbricht M.: Advanced functional polymer membranes, Polymer 47 (2006), 2217-2262.
  • [2] Stavropoulos A., Sculean A., Karring T.: GTR treatment of intrabony defects with PLA/PGA copolymer or collagen bioresorbable membranes in combination with deproteinized bovine bone (Bio-Oss), Clin Oral Invest 8 (2004), 226-232.
  • [3] Ratner D., Hoffman S., Schoen F., Lemons J.: Biomaterials Science. An Introduction to Materials in Medicine. 2ndEdition. Elsevier Academic Press. (p121).
  • [4] Stamatialis D. F., Papenburg B .J., Gironés M., Saiful S., Bettahalli S. N. M., Schmitmeier S., Wessling M.: Medical applications of membranes: Drug delivery, artificial organs and tissue engineering, J Membr Sci 308 (2008), 1-34.
  • [5] Karring T., Nyman S., Gottlow J., Laurell L.: Development of the biological concept of guided tissue regeneration - animal and human studies, Periodontol 2000 1 (1993), 26-35.
  • [6] Gottlow J.: Guided tissue regeneration using bioresorbable and non-resorbable devices: initial healing and long-term results, J Periodontol 64 (1993), 11 Suppl :1157-1165.
  • [7] Tatakis D. N., Promsudthi A., Wikesjö U. M.: Devices for periodontal regeneration. Periodontol 2000 19 (1999), 59-73.
  • [8] Kim K. H., Jeong L., Park H. N., Shin S. Y., Park W. H., Lee S. C., Kim T. I., Park Y. J., Seol Y. J., Lee Y. M., Ku Y., Rhyu I. C., Han S. B., Chung C. P.: Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration, J Biotechnol 120 (2005), 327-339.
  • [9] Ho M. H., Hsieh C. C., Hsiao S. W., Thien D. V. H.: Fabrication of asymmetric chitosan GTR membranes for the treatment of perio-dontal disease, Carbohyd Polym 79 (2010), 955-963.
  • [10] Jae-Kyung K., Kentaro T., Shinsuke N., Masahiro O.: Preparation of a polymeric membrane with fine porous structure by dry casting, J Appl Polym Sci 111 (2009), 2518-2526.
  • [11] Van De Witte P., Dijkstra P. J., Van Den Berg J. W. A., Feijen J.: Phase Separation process in polymer solutions in relation to membrane formation, J Membr Sci 177 (1996), 1-31.
  • [12] Kesting R.E.: Polymer solutions, Synthetic Polymeric Membranes, A Structural Perspective, Wiley 1985, New York.
  • [13] Nakane K., Hata Y., Morita K., Ogihara T., Ogata N.: Porous poly(L-lactic acid)/poly(ethylene glycol) blend films, J Appl Polym Sci 94 (2004), 965-970.
  • [14] Tsuji H., Smith R., Bonfield W., Ikada Y.: Porous biodegradable polyester. I. Preparation of porous poly(L-lactide) films by extraction of poly(ethylene oxide) from their blends, J Appl Polym Sci 75 (2000), 629-637.
  • [15] Seyednejad H., Ghassemi A. H., Van Nostrum C. F., Vermonden T., Hennink W. E.: Functional aliphatic polyesters for biomedical and pharmaceutical applications, J Control Release 152 (2011), 168-76.
  • [16] Pamula E., Filova E., Bacakova L., Lisa V., Adamczyk D.: Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells, J Biomed Mater Res 89A (2009), 432-443.
  • [17] Jain R. A.: The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials 21 (2000), 2475-2490.
  • [18] Harris J. M.: Poly(ethylene glycol) Chemistry: biotechnical and biomedical applications, Plenum Press 1992, Chapter 1, New York.
  • [19] Owen G. Rh., Jackson J., Chehroudi B., Burt H., Brunette D. M.: A PLGA membrane controlling cell behavior for promoting tissue regeneration, Biomaterials 26 (2005), 7447-7456.
  • [20] Chiba K., Kawakami K., Tohyama K.: Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells, Toxicology in Vitro 12 (1998), 251-258.
  • [21] Smith P.K et al.: Measurement of protein using bicinchoninic acid, Anal Biochem 150 (1985), 76-85.
  • [22] Van Faassen E. E., Vanin A. F.: Radicals for life: The various forms of nitric oxide, Elsevier 2007, Amsterdam. ISBN-13: 978-0-444-52236-8.
  • [23] Lin W., Lu C.: Characterization and permeation of microporous poly(ε-caprolactone) films, J Membr Sci 198 (2002), 109-118.
  • [24] Krok, M. Pamula, E.: Poly(L-lactide-co-glycolide) microporous membranes for medical applications produced with the use of polyethylene glycol as pore former - submitted.
  • [25] Kiss E., Bertóti I., Vargha-Butler E. I.: XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films, J Colloid Interface Sci 245 (2002), 91-98.
  • [26] Gordge. M. P.: How cytotoxic is nitric oxide? Institute of urology and nephrology, university college London, UK. Exp Nephrol 6 (1998), 12-16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9519a63b-7be4-41be-b8c2-265a8df38ac5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.