Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wybrane problemy niejednoznaczności ceny dualnej wody w postoptymalizacyjnej analizie systemu wodociągów
Języki publikacji
Abstrakty
In literature it is believed that the dual price of water is an objective premise for shaping the market price of water. However, the authors note that a single vector of dual prices in the distribution of water, when ambiguous, should not become the basis for making decisions both regulating the price of water and affecting the procedures for modernizing the water supply network. This work cautions water management engineers not to duplicate common software errors and indicates how, despite the complete lack of literature tips, the technical problems encountered could be practically solved. The linear dependence of the row vectors of the left-hand parameters of binding constraints in the linear programming model for water consumption is identified here as the reason for the ambiguity of dual price vectors. This ambiguity in the issues of water distribution requires shaping alternative technical scenarios allowing for a variant selection of the method for modifying the water abstraction system. Therefore, the principles for determining the proportionality of simultaneous changes in certain parameters of the right-hand conditions of constraint conditions are described. These principles for the optimal selection of the most productive vectors for the parametric linear programming method were formulated and indicated on a simplified model of water distribution. The methodology developed in the work enables, among others, generating alternative technical scenarios for saving varying amounts of water, resulting in various financial savings.
W literaturze uważa się, że cena dualna wody jest obiektywną przesłanką do kształtowania rynkowej ceny wody. Jednak autorzy zauważają, że pojedynczy wektor cen dualnych w dystrybucji wody, gdy jest niejednoznaczny, nie powinien stać się podstawą do podejmowania decyzji zarówno normującej cenę wody jak i wpływającej na procedury modernizujące sieć wodociągową. Praca uczula inżynierów gospodarki wodnej by nie powielali powszechnych błędów oprogramowania oraz wskazuje jak, pomimo kompletnego braku literaturowych wskazówek, praktycznie rozwiązywać napotykane problemy techniczne. Liniowa zależność wektorów wierszowych parametrów lewych stron wiążących warunków ograniczających w modelu programowania liniowego dla zużycia wody identyfikowana jest tu jako przyczyna niejednoznaczności wektorów cen dualnych. Ta niejednoznaczność w zagadnieniach dystrybucji wody wymaga kształtowania alternatywnych scenariuszy technicznych pozwalających na wariantowy wybór sposobu modyfikacji systemu poboru wody. Dlatego opisano zasady wyznaczania proporcjonalności jednoczesnych zmian niektórych parametrów prawych stron warunków ograniczających. Na uproszczonym modelu dystrybucji wody sformułowano i wskazano te zasady optymalnego doboru najbardziej produktywnych wektorów dla metody parametrycznego programowania liniowego. Opracowana w pracy metodyka umożliwia m.in. wygenerowanie alternatywnych scenariuszy technicznych oszczędzania różnej ilości wody, skutkującej różnymi oszczędnościami finansowymi.
Czasopismo
Rocznik
Tom
Strony
329--340
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
autor
- Department of Applied Mathematics and Computer Science University of Life Sciences in Lublin ul. Głęboka 28, 20-612 Lublin, Poland
autor
- Department of Applied Mathematics and Computer Science University of Life Sciences in Lublin ul. Głęboka 28, 20-612 Lublin, Poland
autor
- Department of Applied Mathematics and Computer Science University of Life Sciences in Lublin ul. Głęboka 28, 20-612 Lublin, Poland
Bibliografia
- 1. Abdy Sayyed M A H, Gupta R, Tanyimboh T T. Flow-based penalty in GA for opitmal design of water distribution network. Hydro-2017 International, L.D.College of Engineering, Ahmedabad, India, 2017; 1439 – 1446.
- 2. Agyei E, Munch D, Burger P. Application of Optimization Modeling to Water Resource Planning in East-Central Florida. Technical Publication SJ2005-2. St. Johns River Water Management District, Palatka, Florida, 2005 ftp://secure.sjrwmd.com/technicalreports/TP/ SJ2005-2.pdf.
- 3. Amani N, Ali N M, Mohammed A H, Samat R A. Maintenance and management of wastewater system components using the condition index system, prediction process and costs estimation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2013; 15(2):161–168.
- 4. Arsham H. Construction of the largest sensitivity region for general linear programs. Appl. Math. Comput. 2007; 189(2):1435–1447, https://doi.org/10.1016/j.amc.2006.12.020.
- 5. Arsham H, Oblak M. Perturbation analysis of general LP models: a unified approach to sensitivity, parametric, tolerance, and more-for-less analysis. Math Comput. Model. 1990; 13(8): 79–102, https://doi.org/10.1016/0895-7177(90)90073-V.
- 6. Bradley S P, Hax A C, Magnanti T L. Applied mathematical programming. Addison-Wesley Publishing Company, Boston, 1977.
- 7. Brown L R. 2030, Who will feed China? World watch, 1994.
- 8. Busłowski A. Stabilność rozwiązania optymalnego zadania programowania liniowego. Wyd. Uniwersytetu w Białymstoku, 2000.
- 9. Chmielowski W. Zastosowania optymalizacji w gospodarce wodnej. Wyd. Politechniki Krakowskiej, 2005.
- 10. Chmielowski W. Management of Complex Multi-reservoir Water Distribution Systems using Advanced Control Theoretic Tools and Techniques. Springer-Verlag, 2013, https://doi.org/10.1007/978-3-319-00239-2.
- 11. Conradie B I, Hoag D L. A review of mathematical programming models of irrigation water values. Water SA 2004; 30(3): 287-292, https://doi.org/10.4314/wsa.v30i3.5076.
- 12. Dantzig G B, Thapa M N. Linear programming. 1: Introduction. New York, Berlin, Heidelberg: Springer 1997.
- 13. Datta B, Harikrishna V. Optimization Applications in Water Resources Systems Engineering. Research Journal of IIT Kanpur 2005:57-64.
- 14. Drobny N L. Linear programming applications in water resources 1. Journal of the American Water Resources Association 1971; 7(6): 1180-1193, https://doi.org/10.1111/j.1752-1688.1971.tb05055.x.
- 15. Easter K W, Rosegrant M W, Dinar A. Markets for water: Potential and performance. Springer Science & Business Media, 1998. https://doi.org/10.1007/b102479
- 16. Ehrgott M, Wiecek M M. Multiobjective programming. International Series in Operations Research and Science 2005: 667-722
- 17. European Commission. Report on the Review of the European Water Scarcity and Droughts Policy; European Commission: Brussels, Belgium, 2012.
- 18. Freire-González J, DeckerCA, HallJW. A Linear Programming Approach to Water Allocation during a Drought. Water 2018; 10(4): 363, https://doi.org/10.3390/w10040363.
- 19. Frizzone J A, Coelho R D, Dourado-Neto D, Soliani R. Linear programming model to optimize the water resource use in irrigation projects:An application to the Senator Nilo Coelho Project. Scientia Agricola 1997; 54(SPE): 136-148.
- 20. Gale D, Kuhn H W, Tucker A W. Linear programming and the theory of games, Activity Analysis of Production and Allocation, Ed. TC Koopmans, 1951.
- 21. Gass S I, Saaty T L. Parametric objective function (part 2)-generalization. Oper. Res. 1955; 3(4):395–401.
- 22. Gibbons D. The Economic Value of Water. Resources for the Future. Publisher: Resources for the Future, Washington, 1986.
- 23. Hanafizadeh P, Ghaemi A, Tavana M. Local perturbation sensitivity analysis of linear programming with functional relation among parameters. Int. J. Oper. Res. Inf. Syst. 2011; 2(1): 42–65, https://doi.org/10.4018/joris.2011010102.
- 24. Ignaciuk S. Post-optimization procedures for the selected transport issues in agricultural engineering. PhD thesis. Department of Applied Mathematics and Computer Science, Faculty of Production Engineering, University of Life Sciences in Lublin (in Polish), 2018.
- 25. Jacovkis P M, Gradowczyk H, Freisztav A M, Tabak E G. A linear programming approach to water-resources optimization. Zeitschrift für Operations Research 1989; 33(5): 341-362, https://doi.org/10.1007/BF01416081.
- 26. Jansen B, de Jong J J, Roos C, Terlaky T. Sensitivity analysis in linear programming: just be careful!. European Journal of Operational Research 1997; 101(1): 15-28, https://doi.org/10.1016/S0377-2217(96)00172-5.
- 27. Keshari A K, Datta B. Multiobjective Management of a Contaminated Aquifer for Agricultural Use. Water Resources Management 1996;10(5): 373-395, https://doi.org/10.1007/BF00452952.
- 28. Klabjan D, Adelman D. Existence of optimal policies for semi-Markov decision processes using duality for infinite linear programming. Siam Journal on Control and Optimization 2006; 44(6): 2104-2122, https://doi.org/10.1137/S0363012903437290.
- 29. Koltai T, Terlaky T. The difference between the managerial and mathematical interpretation of sensitivity analysis results in linear programming. Int. J. Production Economics 2000; 65: 257-274, https://doi.org/10.1016/S0925-5273(99)00036-5.
- 30. Koltai T, Tatay V. A practical approach to sensitivity analysis in linear programming under degeneracy for management decision making. Int. J. Production Economics 2011; 131: 392-398, https://doi.org/10.1016/j.ijpe.2010.04.037.
- 31. Kołowrocki K, Soszyńska J. Optymalizacja procesów eksploatacji złożonych systemów technicznych. Problemy Eksploatacji 2010; 31-40.
- 32. Kolowrocki K, Soszynska-Budny J. Reliability and Safety of Complex Technical Systems and Processes: Modeling – Identification – Prediction- Optimization. Springer Science & Business Media, 2011, https://doi.org/10.1007/978-0-85729-694-8.
- 33. Kołowrocki K, Soszyńska J. Integrated safety and reliability decision support system. Journal of KONBiN 2011; 20(1): 17-28, https://doi.org/10.2478/v10040-012-0033-5.
- 34. Li J, Yan M, Yu J. Evaluation on gas supply reliability of urban gas pipeline network. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20(3): 471–477, https://doi.org/10.17531/ein.2018.3.17.
- 35. Lipinski P, Filipiak P, Rychlikowski P, Stanczyk J, Kajewska-Szkudlarek J, Lomotowski J, Konieczny T. Discovering weekly seasonality for water demand prediction using evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference Companion 2017; 07: 33-34, https://doi.org/10.1145/3067695.3082049.
- 36. Liu X, Chen X, Wang S. Evaluating and Predicting Shadow Prices of Water Resources in China and its Nine Major River Basins. Water Resour. Manag. 2009; 23(8):1467–1478, https://doi.org/10.1007/s11269-008-9336-7.
- 37. Madadpour S, Hanafizadeh P, Habibi R. Sensitivity Analysis of Asset Allocation: In The Presence of Correlation. Journal of Accounting, Finance and Auditing Studies 2018; 4(1): 151-166.
- 38. Malinowski J. A newly developed method for computing reliability measures in a water supply network. Operations Research and Decisions 2016; 26(4): 49–64.
- 39. Manikowski A. Optymalizacja rejonizacji Stacji Ratownictwa Medycznego z wykorzystaniem zmodyfikowanego zagadnienia transportowego na przykładzie Warszawy. Problemy Zarządzania 2011; 9(3): 227 – 241.
- 40. Mavrotas G. Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems. Applied Mathematics and Computation 2009; 213(2): 455-465, https://doi.org/10.1016/j.amc.2009.03.037.
- 41. McKee P W, Clark B R, Czarnecki J B. Conjunctive-use optimization model and sustainable-yield estimation for the Sparta aquifer of southeastern Arkansas and north-central Louisiana. Water-Resources Investigations Report 2003; 2003-4231, https://doi.org/10.3133/wri034231.
- 42. Nieuwoudt W L, Backeberg G R. A review of the modelling of water values in different use sectors in South Africa. Water SA 2011; 37(5):703-710, https://doi.org/10.4314/wsa.v37i5.7.
- 43. Połomska J, Chmielowski W. Optimization of water management system operation while quality and quantity of water determined. Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation 2012; 44(1): 15-24.
- 44. Romaniuk M. Optimization of maintenance costs of a pipeline for a V-shaped hazard rate of malfunction intensities. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20(1): 46–56, https://doi.org/10.17531/ein.2018.1.7.
- 45. Romaniuk M. Application of Markov chain and interest rate process for forecasting of costs of maintenance of pipelines. In: Simulation in Umwelt-und Geowissenschaften. Workshop Müncheberg. 2015: 147-156.
- 46. Romaniuk M. On simulation of maintenance costs for water distribution system with fuzzy parameters. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18(4): 514–527, https://doi.org/10.17531/ein.2016.4.6.
- 47. Saaty T L, Gass S I. Parametric objective function (part 1). Oper. Res. 1954; 2(3): 316–319.
- 48. Shahin A., Hanafizadeh P, Hladík M. Sensitivity analysis of linear programming in the presence of correlation among right-hand side parameters or objective function coefficients. Central European Journal of Operations Research 2016; 24(3): 563-593, https://doi.org/10.1007/s10100-014-0353-8.
- 49. Sioshansi R, Conejo A J. Optimization in Engineering: Models and Algorithms (Vol. 120). Springer, 2017, https://doi.org/10.1007/978-3-319-56769-3.
- 50. Słowiński B. Inżynieria eksploatacji maszyn. Wyd. Politechniki Koszalińskiej, 2014.
- 51. Sukharev M G, Karasevich A M. Reliability models for gas supply systems. Automation and Remote Control 2010; 71(7): 1415–1424, https://doi.org/10.1134/S0005117910070155.
- 52. Taha H A. Operations research: An introduction. Prentice Hall, 2007.
- 53. Wang Z. The linear programming model of water resource utilization in the irrigated area of Huaibei, Institute of Water Resource of Huai River Committee and Anhui Province, Bengbu, 2018
- 54. Ward J E, Wendell R E. Approaches to sensitivity analysis in linear programming. Ann. Oper. Res. 1990; 27(1): 3–38, https://doi.org/10.1007/BF02055188.
- 55. Wawrzosek J, Ignaciuk S. Use of extended sensitivity reports of linear programming in emergency medicinal services issues. Logistyka (Poznan) 2015; No 4 attachment CD ROM no 2 part 5: 8473-8481 (in Polish).
- 56. Wawrzosek J, Ignaciuk S. Selected postoptimization problems of the logistics of supplying urban-industrial agglomerations with water. Logistyka (Poznan) 2016; No 1 attachment CD ROM part 2: 425-431 (in Polish).
- 57. Wawrzosek J, Ignaciuk S. Dual model for classic transportation problem as a tool for dynamizing management in a logistics company. Econtechmod 2016;5(3): 95-100.
- 58. Wawrzosek J, Ignaciuk S. Postoptimization of the model of water supply for urban and industrial agglomeration. XLVIII Seminar of Applied Mathematics, ITM Web of Conferences 23, 00035, 1-5, https://doi.org/10.1051/itmconf/20182300035.
- 59. Wendell R E. A preview of a tolerance approach to sensitivity analysis in linear programming. Discrete Math. 1982; 38(1): 121–124, https://doi.org/10.1016/0012-365X(82)90178-9.
- 60. Wendell R E. Using bounds on the data in linear programming: the tolerance approach to sensitivity analysis. Math. Program. 1984; 29(3):304–322, https://doi.org/10.1007/BF02591999.
- 61. Wendell R E. The tolerance approach to sensitivity analysis in linear programming. Manag Sci. 1985; 31(5): 564–578, https://doi.org/10.1287/mnsc.31.5.564.
- 62. Wendell R E. Sensitivity analysis revisited and extended. Decision Sciences 1992; 23(5): 1127-1142, https://doi.org/10.1111/j.1540-5915.1992.tb00439.x.
- 63. Wondolowski F R. A generalization of Wendell's tolerance approach to sensitivity analysis in linear programming. Decis Sci 1991; 22(4):792–811, https://doi.org/10.1111/j.1540-5915.1991.tb00365.x.
- 64. World Bank. High and Dry: Climate Change, Water, and the Economy; World Bank: Washington, DC, USA, 2016.
- 65. http://www.maslowski.pl/index.php?id=simplex
- 66. Zio E. An introduction to the basics of reliability and risk analysis. World Scientific Publishing Co. Pte. Ltd, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95191dd1-6985-4e17-a87d-bd32b22bb44e