PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy absorption characteristics of thin-walled sinusoidal corrugated tube using RSM-CCD

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The axial crushing behaviour of tubes of different section shapes has been extensively investigated as they have an excellent energy absorption, but the thin walled corrugated tube structures have been designed to further improve their energy absorption performance. The study aims to analyze the effect of sinusoidal corrugations along cross section of the tube on peak force, energy absorption and specific energy absorption. In the present work the response surface methodology (RSM) using central composite design (CCD) has been used and simulation work is performed by using ANSYS workbench to explore the effects of geometrical parameters on the responses of constructing models.
Rocznik
Strony
144--153
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Integral University, Lucknow, India
  • Department of Mechanical Engineering, Integral University, Lucknow, India
Bibliografia
  • 1.Abramowicz, W., Norman J., 1986. Dynamic progressive buckling of circular and square tubes, International Journal of Impact Engineering 4(4), 243-270.
  • 2.Abdewi, Elfetori F., et al., 2008. Quasi-static axial and lateral crushing of radial corrugated composite tubes, Thin-Walled Structures, 46(3), 320-332.
  • 3.Alexander, JM., 1960. An approximate analysis of the collapse of thin cylindrical shells under axial loading, The Quarterly Journal of Mechanics and Applied Mathematics, 13(1), 10-15.
  • 4.Alghamdi, A.A.A., 2001. Collapsible impact energy absorbers: an overview,Thin-walled structures, 39(2), 189-213.
  • 5.Alkhatib, F., Mahdi, E., Dean, A. 2020. Crushing response of CFRP and KFRP composite corrugated tubes to quasi-static slipping axial loading: experimental investigation and numerical simulation, Composite Structures, 112370.
  • 6.Baroutaji, Ahmad, et al., 2015. Analysis and optimization of sandwich tubes energy absorbers under lateral loading, International Journal of Impact Engineering, 82,74-88.
  • 7.Ebrahimi, Saeed, Nader Vahdatazad, 2015. Multiobjective optimization and sensitivity analysis of honeycomb sandwich cylindrical columns under axial crushing loads, Thin-Walled Structures, 88, 90-104.
  • 8.Fan, Z., Lu, G., Liu, K.J.E.S., 2013. Quasi-static axial compression of thinwalled tubes with different cross-sectional shapes, Engineering Structures, 55, 80-89.
  • 9.Fan, Zhihua, et al., 2013. Axial crushing of triangular tubes, International Journal of Applied Mechanics, 5(01), 1350008.
  • 10.Hong, Wu, et al., 2013. Quasi-static axial compression of triangular steel tubes, Thin-Walled Structures, 62, 10-17.
  • 11.Kavi, Halit, A., Kaan Toksoy, Mustafa Guden. 2006. Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient, Materials & design 27(4), 263-269.
  • 12.Lu, Guoxing, Yu, T.X., 2003. Energy absorption of structures and materials, Elsevier, 2003.
  • 13.Mamalis, A.G., et al. 1991. Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders, Thin-Walled Structures, 12(1), 17-34.
  • 14.Mamalis, A.G., et al.2003. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section, Thin-walled structures, 41(10), 891-900.
  • 15.Montgomery, Douglas, C. 2017. Design and analysis of experiments, John wiley & sons.
  • 16.Nia, A., Alavi, H. Badnava, Kh Fallah Nejad. 2011. An experimental investigation on crack effect on the mechanical behavior and energy absorption of thin-walled tubes, Materials & Design, 32(6), 3594-3607.
  • 17.Nia, Ali Alavi, Jamal Haddad Hamedani, 2010. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries, Thin-Walled Structures, 48(12), 946-954.
  • 18.Ochelski, S., Gotowicki P., 2009. Experimental assessment of energy absorption capability of carbon-epoxy and glass-epoxy composites, Composite Structures, 87(3), 215-224.
  • 19.Palanivelu, Sivakumar, et al., 2011. Crushing and energy absorption performance of different geometrical shapes of small-scale glass/polyester composite tubes under quasi-static loading conditions, Composite structures, 93(2), 992-1007.
  • 20.Paruka, Perowansa, Mohd Kamal Mohd Shah, Md Abdul Mannan, 2013. Influence of axial and oblique impact loads on crush response properties of square tube structures made with FRP pultruded composites, Procedia Engineering, 68, 572-578.
  • 21.Sebaey, T.A., et al., 2014. Crushing behavior of hybrid hexagonal/octagonal cellular composite system: All made of carbon fiber reinforced epoxy, Materials & Design, 60, 556-562.
  • 22.Seitzberger, M., et al., 2000. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam, International Journal of Solids and Structures, 37(30), 4125-4147.
  • 23.Umeda, Tsutomu, Koji Mimura, Takahiro Morisaka, 2010. Study of energy absorption efficiency for a few thin-walled tubes in axial crushing, Journal of Solid Mechanics and Materials Engineering, 4(7), 875-890.
  • 24.Xiong, Jian, et al., 2016. Fabrication and mechanical behavior of carbon fiber composite sandwich cylindrical shells with corrugated cores, Composite Structures, 156, 307-319.
  • 25.Zhang, Xiong, Hui Zhang, 2012. Experimental and numerical investigation on crush resistance of polygonal columns and angle elements, ThinWalled Structures, 57, 25-36.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9518b85e-f67e-479d-a9fd-34788ed6b0dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.