PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integration of Processes of Radionuclide-Contaminated Territories Decontamination in the Framework of their Ecological-Socio-Economic Rehabilitation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Large-scale disasters at nuclear power plants (NPPs) and their consequences are still the subject of discussion by the world scientific community, which makes mankind recognize the unsolved problem of radiation pollution. Accordingly, the search for new effective biocomposite materials with high sorption capacity to eliminate harmful effects associated with radiation contamination of large territories is an urgent task on a global scale. This paper is devoted to the study of the decontamination processes of the areas contaminated with radionuclides, the search for new mechanisms of fixation of radionuclides and heavy metals in the soil using the matrix material of different origin. In order to intensify the process of radionuclide fixation in the soil-plant system the method consisting of introducing into the soil the organic-mineral biocomposite based on sewage sludge and phosphogypsum after anaerobic fermentation was proposed. It is necessary to further study the processes of sorption and radionuclides solubilization due to complexation with organic agents present in matrix materials of different nature. The mechanisms of radionuclide and heavy metal fixation using matrix material of different origin were analyzed and a general model was formed. The direction of integration of radionuclide-contaminated soil decontamination technologies into the process of ecological, social, and economic development of the territories under rehabilitation after the accidents at the Chernobyl NPP and Fukushima-1 NPP is proposed.
Twórcy
  • Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
  • International Innovation and Applied Center "Aquatic Artery", 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
  • International Innovation and Applied Center "Aquatic Artery", 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
  • Institute of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice, 4, Vysokoškolská St. 04200, Kosice, Slovakia
  • International Innovation and Applied Center "Aquatic Artery", 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
  • Polissya State University, 23, Dneprovskoy flotilii St., 225710, Pinsk, Republic of Belarus
  • Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
  • Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
autor
  • International Innovation and Applied Center "Aquatic Artery", 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
  • Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, 060-0819, Sapporo, Hokkaido, Japan
Bibliografia
  • 1. Abdel Rahman R.O., Ibrahium H.A., Hung Y-T. 2011. Liquid radioactive wastes treatment: A Review. Water, 3(2), 551–565.
  • 2. Abedini A., Bakar A.A., Larki F., Menon P.S., Islam M.S., Shaari S. 2016. Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route. Nanoscale Research Letters, 11(1), 287.
  • 3. Agayev T.N., Mansimov Z.A., Melikova S.Z. 2016. Water heterogeneous radiolysis in the presence of radium silicate. PASТ, 4(104), 26–31.
  • 4. Agayev T.N., Garibov A.A., Guseinov V.I. 2017. Influence of gamma-radiation on the hydrogen yield at water radiolysis on the surface of nano-zirconium. PASТ, 5(111), 27−30.
  • 5. Azarov S.I., Vilenska L.M., Korchevna O.V. 1998. Radiolysis of water in Sarcophagus. Prepr. Academy of sciences of the Ukraine Institute for Nuclear Research. Kyiv. Ukraine.
  • 6. Azarov S.I., Sidorenko V.L., Zadunai A.S. 2018. Application of system analysis in the sphere of radioactive waste management Scientific Edition. Problems of General Power Engineering, 2(53), 28−35. (in Ukrainian)
  • 7. Byakov V.M., Stepanov S.V., Magomedbekov E.P. 2017. The beginning of radiation chemistry. II. Radiolysis of liquid water. Moscwa, RHTU im. D.I. Mendeleeva. (in Russian)
  • 8. Carrasco-Flores E.A., LaVerne J.A. 2007. Surface species produced in the radiolysis of zirconia nanoparticles. The Journal of Chemical Physics, 127(23).
  • 9. Chernykh Y.Y., Vereshchagina T.A., Mazurova E.V., Parfenov V.A., Solovyev L.A., Vereshchagin S.N., Sharonova O.M. 2019. Magnetic composite sorbents for trapping heavy metals from liquid waste and their immobilization in a mineral-like matrix. Journal of Siberian Federal University. Chemistry, 12(3), 445−457.
  • 10. Chernysh Y., Plyatsuk L. 2018. Scientific and theoretical substantiation of the influence of organomineral biocomposite on the mobility of radionuclides and heavy metals in the soil. Environmental Security and Balanced Resource Use, 1(17), 30–38.
  • 11. Chernysh Y., Plyatsuk L. 2018. The carrier development for biofilms on the basis of technogenic wastes for pollutants treatment in the environmental protection technologies. Advances in Design, Simulation and Manufacturing, 422–432.
  • 12. Chernysh Y., Plyatsuk L., Dychenko T. 2019. The protective functions stimulation of the soil complex with the use of biogenic composites based on the sewage sludge and phosphogypsum. The Journal of Solid Waste Technology and Management, 45(2), 226–233.
  • 13. Chernysh Y., Plyatsuk L. 2020. Environmentally Friendly Concept of Phosphogypsum Recycling on the Basis of the Biotechnological Approach. International Business, Trade and Institutional Sustainability. In: Leal Filho W., Borges de Brito P., Frankenberger F. (Eds) World Sustainability Series. Springer, Cham, 167–182.
  • 14. Chernysh Y., Yakhnenko O., Chubur V., Roubik H. 2021. Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends and Prospects. Appl. Sci., 11(4). https://doi.org/10.3390/app11041575.
  • 15. Civil Service of Ukraine for Emergencies. Radioecological condition of the exclusion zone (in Ukrainian). http://www.mns.gov.ua/.
  • 16. Dzaugis M.E., Spivack A.J., D’hondt S. 2015. A quantitative model of water radiolysis and chemical production rates near radionuclide-containing solids. Radiation Physics and Chemistry, 115, 127−134.
  • 17. Environmental consequences of the chernobyl accident and their remediation: twenty years of experience. Report of the chernobyl forum expert group. Environment. 2006. https://www-pub.iaea.org/mtcd/publications/pdf/pub1239_web.pdf.
  • 18. Evrard O., Laceby J.P., Nakao A. 2019. Effectiveness of landscape decontamination following the Fukushima nuclear accident: A Review. Soil, 5(2), 333−350.
  • 19. Fukushima: Japan will have to dump radioactive water into Pacific, minister says. 2019. https://www.theguardian.com/environment/2019/sep/10/fukushima-japan-will-have-to-dump-radioactive-water-intopacific-minister-says. Accessed 8 May 2021.
  • 20. Hu Q.H., Zavarin M., Rose T.P. 2008. Effect of reducing groundwater on the retardation of redoxsensitive radionuclides. Geochemical Transactions, 9. https://doi:10.1186/1467-4866-9-12.
  • 21. Japanese Ministry of the Environment. Plan for disposal of ash contaminated with more than 8,000 becquerels and less than 100,000 becquerels of radioactive cesium per kilogram. 2011. https://www.env.go.jp/en/headline/1638.html. Accessed 8 May 2021.
  • 22. Japanese Ministry of the Environment. Act on Special Measures concerning the Handling of Environment Pollution by Radioactive Materials Discharged by the NPS Accident Associated with the Tohoku District – Off the Pacific Ocean Earthquake That Occurred on 11 March 2011. http://josen.env.go.jp/en/framework/pdf/basic_principles.pdf. Accessed 5 May 2021.
  • 23. Jioa F., Kinoshita N., Kawaguchi M., Asada M., Honda M., Sueki K., Koido K., Ninomiya Y. 2021. Use of thermal treatment with CaCl2 and CaO to remove 137Cs in the soil collected from the area near the Fukushima Daiichi Nuclear Power Plant. Journal of Hazardous Materials, 401, 123364.
  • 24. Kang D.J., Tazoe H., Yamada M. 2021. Effects of environmental conditions, low-level potassium, ethylenediaminetetraacetic acid, or combination treatment on radiocesium-137 decontamination in Napier grass. Environmental Science and Pollution Research. https://link.springer.com/article/10.1007%2Fs11356-021-14177-x. Accessed 5 May 2021.
  • 25. Kojima T., Takayanagi K., Taniguchi R., Okuda S., Seino S., Yamamoto T.A. 2006. Hydrogen gas generation from the water by gamma-ray radiolysis with preirradiated silica nanoparticles dispersing. Journal of Nuclear Science and Technology, 43(10), 1287−1288.
  • 26. Kotel'nikov A., Suvorova V., Koval’skij A., Ahmedzhanova G., Tihomirova V. 2004. Mineral matrix materials for the immobilization of radionuclides (experimental studies). Experimental mineralogy: some results at the turn of the century, 2, 11−20. (in Russian)
  • 27. Kumagai Y., Kimura A., Taguchi M., Nagaishi R., Yamagishi I., Kimura T. 2013. Hydrogen production in gamma radiolysis of the mixture of mordenite and seawater. Journal of Nuclear Science and Technology, 50(2), 130–138.
  • 28. Kursky A.S., Kalygin V.V. 2013. Radiolysis coolant and methods of explosion security in the boiling water reactors. SSTU Bulletin, 3(72), 116−122. (in Russian)
  • 29. Law of Ukraine On the National Program for Overcoming the Consequences of the Chornobyl Catastrophe for 2006-2010 (in Ukrainian). Verkhovna Rada of Ukraine. http://zakon2.rada.gov.ua/laws/show/3522-15. Accessed 25 May 2021.
  • 30. Le Caër S. 2011. Water Radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water, 3(1), 235−253.
  • 31. Masanov O. 2017. Improvement of technologies of radiactive waste conditioning with the use of processes in "The Fluidized Bed". (in Russian). Nuclear and Radiation Safety, 4(86). https://www.secnrs.ru/publications/nrszine/4-86-2017/fluidized_bed.pdf. Accessed 20 May 2021.
  • 32. Mel'nichuk A.O., Tararіko M.Y. 2015. Ecoenergy and economic efficiency of alternative fertilizer systems on radioactively contaminated soils of Polesie of Ukraine. Agroecological Journal, 1, 121–125. (in Ukrainian).
  • 33. Nagaishi R., Morita K., Yamagishi I., Hino R., Ogawa T. 2014. Revaluation of hydrogen generation by water radiolysis in SDS vessels at TMI-2 accident. Proceedings of 2014 Nuclear Plant Chemistry Conference (NPC 2014), 47(30).
  • 34. Norrfors K.K., Marsac R., Bouby M., Heck S., Wold S., Lützenkirchen J., Schäfer T. 2016. Montmorillonite colloids: II. Colloidal size dependency on radionuclide adsorption. Applied Clay Science, 123, 292–303.
  • 35. Parajuli D., Suzuki Y., Sato M., Takahashi A., Tanaka H., Kawamoto T. 2016. Assessment of the measures for the extraction or fixation of radiocesium in soil. Geoderma, 267, 169–173.
  • 36. Patent of Russian Federation for utility model 174134. Installation for cleaning heavy water from Tritium and Protia, Published on 10.03.2017, bul. 28 (in Russian).
  • 37. Payne T.E., Brendler V., Ochs M., Baeyens B., Brown P.L., Davis J.A., Ekberg C., Kulik D.A., Lutzenkirchen J., Missana T., Tachi Y., Van Loon L.R., Altmann S. 2013. Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal. Environmental Modelling & Software, 42, 143–156.
  • 38. Pipíška M., Ballova S., Fristak V., Ďuriška L., Hornik M., Demcak S., Holub M., Soja G. 2020. Assessment of pyrogenic carbonaceous materials for effective removal of radiocesium. Key Engineering Materials, 838, 103–110.
  • 39. Plyatsuk L., Chernish E. 2014. Intensification of the anaerobic microbiological degradation of sewage sludge and gypsum waste under bio-sulfidogenic conditions. The Journal of Solid Waste Technology and Management, 1, 10–23.
  • 40. Plyatsuk L., Chernysh Y., Ablieieva I., Burla O., Hurets L. 2018. Research into biotechnological processes of plant S-nutrition stimulation by the products of phosphogypsum disposal in gas cleaning system. Eastern-European Journal of Enterprise Technologies, 10(93), 6–14.
  • 41. Prakash D., Gabani P., Chandel A.K., Ronen Z., Singh O.V. 2013. Bioremediation: a genuine technology to remediate radionuclides from the environment. Microbial Biotechnology, 6(4), 349–360.
  • 42. Runde W., Conradson S.D., Efurd D.W., Lu N., Vanpelt C.E., Tait C.D. 2002. Solubility and sorption of redox-sensitive radionuclides (Np, Pu) in J-13 water from the Yucca Mountain site: comparison between experiment and theory. Applied Geochemistry, 17(6), 837–853.
  • 43. Seino S., Yamamoto T.A., Fujimoto R., Hashimoto K., Katsura M., Okuda S., Okitsu K. 2001. Enhancement of hydrogen evolution yield from water dispersing nanoparticles irradiated with gamma-ray. Journal of Nuclear Science and Technology, 38(8), 633–636.
  • 44. Smičiklas I., Šljivić-Ivanović M. 2016. Radioactive contamination of the soil: assessments of pollutants mobility with implication to remediation strategies. Soil Contamination - Current Consequences and Further Solutions; Edited by Marcelo L. Larramendy and Sonia Soloneski: InTech, Chapters published. https://www.intechopen.com/chapters/52054. Accessed 1 May 2021.
  • 45. Szewczak K., Jednoróg S., Wołoszczuk K., Szlązak R., Podgórska Z., Rafalska-Przysucha A., Gluba L., Łukowski M. 2019. Impact of soil incorporation of biochar on environmental radioactivity. Journal of Environmental Quality. https://doi.org/10.1002/jeq2.20014. Accessed 1 May 2021.
  • 46. Tihonov M.N. 2015. Anthology of the disaster at the Japanese nuclear power plant Fukushima-1. Health Risk Analysis, 1(9), 82–102. (in Russian)
  • 47. The Chernobyl Investment Platform: pooling opportunities for the recovering regions of Belarus. 2021. https://www.by.undp.org/content/belarus/ru/home/presscenter/blog/Chernobyl_investment_platform.html. Accessed 7 May 2021.
  • 48. Vellingiri K., Kim K-H., Pournara A., Deep A. 2018. Towards high-efficiency sorptive capture of radionuclides in solution and gas. Progress in Materials Science, 94, 1−67.
  • 49. Yousefi N. 2014. Gamma-radiolysis kinetics of liquid, vapour and supercritical water. Western University. https://ir.lib.uwo.ca/etd/2343.
  • 50. Yamaguchi N., Hikono A., Saito T. 2019. Effects of zeolite and vermiculite addition on exchangeable radiocaesium in soil with accelerated ageing. Journal of Environmental Radioactivity, 203, 18–24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95142576-4768-43b8-a35c-d8de464f84aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.