PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

This work was financially supported by the Ministry of Science and Higher Education, research number FN/61/AU/2024.

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industrial quality control systems in mass production facilities must exhibit a very high level of defect detection efficiency. The continuous increase in quality control and process automation requirements is leading companies to increasingly experiment with artificial intelligence methods to boost efficiency. One potential application area for AI is visual inspection, which is an essential element of almost every quality control process. In this article, we propose the use of neural networks for the visual inspection of rotationally symmetric components. The presented method leverages the existence of symmetry to represent images in a polar coordinate system and to implement the learning process on data modified in this way. An undeniable advantage of the proposed algorithm is also the transition from a two- dimensional to a one-dimensional representation, which significantly reduces the demand for memory resources and the required computational power. This is particularly important in mass production processes, where the time for data analysis is relatively short. The high repeatability of images due to the mass production nature makes this model exceptionally effective, allowing not only to confirm the presence of defects but even to locate them. The obtained results are compared with the results achieved using a convolutional neural network operating on two-dimensional images.
Twórcy
  • Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego Street 4, 37-450 Stalowa Wola, Poland
  • Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego Street 4, 37-450 Stalowa Wola, Poland
  • Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego Street 4, 37-450 Stalowa Wola, Poland
autor
  • Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego Street 4, 37-450 Stalowa Wola, Poland
  • Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Wincentego Pola Street 2, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Smith S.J. and Adendorff K. Advantages and limitations of an automated visual inspection system. The South African Journal of Industrial Engineering, 2011, 5(1). https://doi.org/10.7166/5-1-423
  • 2. Pillet M., Baudet N., Maire J.L. The visual inspec- tion of product surfaces. Food Quality and Preference, 2012, 27, 153-160. https://doi.org/10.1016/j. foodqual.2012.08.006
  • 3. Chmielowiec A., Sikorska-Czupryna S., Klich L., Woś W. and Kuraś P. Optimization of quality control processes using the NPGA genetic algorithm. Advances in Science and Technology Research Journal, 2024, 18(7), 264–276. https://doi. org/10.12913/22998624/193195
  • 4. Daneshjo N., Malega P. and Drábik P. Techniques for production quality control in the global company. Advances in Science and Technology Research Journal, 2021, 15(1), 174–183. https://doi. org/10.12913/22998624/131558
  • 5. Imai M. Der Schlüssel zum Erfolg der Japaner im Wettbewerb. Langen Müller, 1992, München, German.
  • 6. Burghardt A., Kurc K., Szybicki D., Muszyńska M. and Szczęch T. Monitoring the parameters of the robot-operated quality control process. Advances in Science and Technology Research Journal, 2017, 11(1). http://dx.doi.org/10.12913/22998624/68466
  • 7. Huang S. and Pan Y. Automated visual inspection in the semiconductor industry: A survey. Computers in industry, 2015, 66, 1–10. http://dx.doi. org/10.1016/j.compind.2014.10.006
  • 8. Davies A. Defective products and product recall issues for businesses. Pitmans LLP, 2014.
  • 9. Minwoo P. and Jongpil J. Design and implementation of machine vision-based quality inspection system in mask manufacturing process. Sustainability, MDPI, 2022, 14(10): 6009. https://doi. org/10.3390/su14106009
  • 10. Seitz H. Quality inspection with AI vision. Vision & Sensors. System Integration, 2023.
  • 11. Akundi A., Reyna M. A machine vision based automated quality control system for product dimensional analysis. Procedia Computer Science, 2021, 185, 127-134. https://doi.org/10.1016/j. procs.2021.05.014
  • 12. Lewis J. Machine vision system counts, identifies and verifies highly-regulated objects. Vision sys- tem design, 2018.
  • 13. Chmielowiec A., Klich L., Woś W., Błachowicz A. Implementation of the Maintenance Cost Optimization Function in Manufacturing Execution System. In J. Filipe, M. Śmiałek, A. Brodsky, and S. Hammoudi, editors. Enterprise Information Systems, Cham, Springer Nature Switzerland. 2023, 133–154, http://dx.doi.org/10.1007/978-3-031-39386-0_7
  • 14. Chmielowiec A. and Klich L. Application of python libraries for variance, normal distribution and Weibull distribution analysis in diagnosing and operating production systems. Diagnostyka, 2021, 22(4), 89– 105. http://dx.doi.org/10.29354/diag/144479
  • 15. Sioma A. Vision system in product quality control systems. Applied sciences, 2023, 13(2), 751. https:// doi.org/10.3390/app13020751
  • 16. Schlagenhauf T., Brander T. and Fleischer J. A stitching algorithm for automated surface inspection of rotationally symmetric components. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 169–177. https://doi.org/10.1016/j. cirpj.2021.05.013
  • 17. Baranovskyi D., Myamlin S., Bulakh M., Podosonov D., Muradian L. Determination of the filler concentration of the composite tape. Applied Sciences, 2022, 12(21), 11044. https://doi.org/10.3390/ app122111044
  • 18. Baranovskyi D., Bulakh M., Michajłyszyn A., Myamlin S., Muradian L. Determination of the risk of failures of locomotive diesel engines in maintenance. Energies, 2023, 16(13), 4995. https://doi. org/10.3390/en16134995
  • 19. Qi X., Chen G. Y., Li G., Cheng X. and Li C. Applying neural-network-based machine learning to addi- tive manufacturing: Current applications, challenges, and future perspectives. Engineering, 2019, 5(4), 721–729. https://doi.org/10.1016/j.eng.2019.04.012
  • 20. Vladov S., Yakovliev R., Bulakh M., Vysotska V. Neural network approximation of helicopter turboshaft engine parameters for improved efficiency. Energies, 2024, 17(9), 2233. https://doi.org/10.3390/en17092233
  • 21. Bulakh M., Klich L., Baranovska O., Baida A., Myamlin S. Reducing traction energy consumption with a decrease in the weight of an all-metal gondola car. Energies, 2023, 16(18), 6733. https:// doi.org/10.3390/en16186733
  • 22. Ren S., He K., Girshick R., Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 2015, 91-99. https://doi. org/10.48550/arXiv.1506.01497
  • 23. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11), 2278–2324. http://dx.doi.org/10.1109/5.726791
  • 24. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770–778. http://dx.doi.org/10.1109/ CVPR.2016.90
  • 25. Xie X. A review of recent advances in surface defect detection using texture analysis techniques. Electronic Letters on Computer Vision and Image Analysis, 2008, 7(3), 1–22. https://doi.org/10.5565/ rev/elcvia.268
  • 26. García Peña D., García Pérez D, Díaz Blanco I. and Marina Juárez J. Exploring deep fully-convolutional neural networks for surface defect detection in complex geometries. The Interna- tional Journal of Advanced Manufacturing Technology, 2024, 134(a), 97–111. https://doi.org/10.1007/ s00170-024-14069-7
  • 27. Ameri R., Hsu C. and Band S. A systematic review of deep learning approaches for surface defect detection in industrial applications. Engineering Applications of Artificial Intelligence, 2024, 130, 107717. http://dx.doi.org/10.1016/j.engappai.2023.107717
  • 28. Cumbajin E., Rodrigues N., Costa P., Miragaia R., Frazão L., Costa N., Fernández-Caballero A., Carneiro J., Buruberri L. and Pereira A. A systematic re-view on deep learning with CNNs applied to Surface defect detection. Journal of Imaging, 2023, 9(10), 193. https://doi.org/10.3390/jimaging9100193
  • 29. Johanesa T.V.J., Equeter L. and Mahmoudi S. A. Survey on AI applications for product quality control and predictive maintenance in industry 4.0. Electronics, 2024, 13(5), 976.
  • 30. Awtoniuk M., Majerek D., Myziak A. and Gajda C. Industrial application of deep neural network for aluminium casting defect detection in case of unbalanced dataset. Advances in Science and Technology Research Journal, 2022, 16(5), 120–128. https://doi. org/10.12913/22998624/154963
  • 31. Oborski P. and Wysocki P. Intelligent visual quality control system based on convolutional neural networks for holonic shop floor control of industry 4.0 manufacturing systems. Advances in Science and Technology Research Journal, 2022, 16(2), 89–98. https://doi.org/10.12913/22998624/145503
  • 32. Wen S., Chen Z. and Li C. Vision-based Surface inspection system for bearing rollers using convo lutional neural networks. Applied Sciences, 2018, 8(12), 2565. https://doi.org/10.3390/app8122565
  • 33. Hena B., Ramos G., Ibarra-Castanedo C. and Maldague X.. Automated defect detection through flaw grading in non-destructive testing digital x-ray radiography. NDT, 2024, 2(4), 378–391. https://doi. org/10.3390/ndt2040023
  • 34. Abagiu M. M., Cojocaru D., Manta F. and Mariniuc A. Detecting machining defects inside engine piston chamber with computer vision and machine learning. Sensors, 2023, 23(2), 785. https://doi. org/10.3390/s23020785
  • 35. Yoon Y., Woo J. and Oh T. A study on the application of machine and deep learning using the impact response test to detect defects on the piston rod and steering rack of automobiles. Sensors, 2022, 22(24), 9623. https://doi.org/10.3390/s22249623
  • 36. Oeckl S., Gruber R., Schön W., Eberhorn M., Bauscher I., Wenzel T. and Hanke R. Process integrated inspection of motor pistons using computerized tomography. Microelectronic Systems: Circuits Systems and Applications, 2011, 277–286. http:// dx.doi.org/10.1007/978-3-642-23071-4_26
  • 37. Utami L. P. and Leni D. Modelling piston damage detection using a convolutional neural network based on digital image. International Journal of Multidisciplinary Research and Literature, 2024, 3(2), 172–183. https://doi.org/10.53067/ijomral.v3i2.189
  • 38. Brambilla P., Conese C., Fabris D. M., Chiariotti P. and Tarabini M. Algorithms for vision-based quality control of circularly symmetric components. Sensors, 2023, 23(5), 2539. https://doi.org/10.3390/s23052539
  • 39. Gonzalez R. C. and Woods R. E. Digital image processing. Prentice Hall, Upper Saddle River, 2008.
  • 40. Szeliski R. Computer Vision - Algorithms and Applications. Texts in Computer Science. Springer, 2011.
  • 41. Tan C., Sun F., Kong T., Zhang W., Yang C., Liu C. A survey on deep transfer learning. In: Artificial Neural Networks and Machine Learning – ICANN, Cham. Springer International Publishing, 2018, 270–279. https://doi.org/10.1007/978-3-030-01424-7_27
  • 42. Bergmann P., Löwe S., Fauser M., Sattlegger D., Steger C. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, SCITEPRESS - Science and Technology Publications, 2019, 372– 380. http://dx.doi.org/10.5220/0007364503720380
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-950b3e3f-f3e9-4e6b-b37c-44d7e8330d9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.