PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat and mass transfer mechanism on three-dimensional flow of inclined magneto Carreau nanofluid with chemical reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The characteristic of nano sized particles mass flux conditions are engaged in this investigation. Here we assume that the nano sized particle flux is zero and the nano sized particle fraction arranged itself on the boundary layer. With this convincing and revised relation, the features of Buongiorno relation on three-dimensional flow of Carreau fluid can be applied in a more efficient way. The governing partial differential equations of continuity, momentum, energy and concentration equations which are transmitted into set of pair of nonlinear ordinary differential equations utilizing similar transformations. The numeric solutions are acquired by engaging the bvp4c scheme, which is a finite-difference code for solving boundary value problems. A parametric study is accomplished to demonstrate the impact of Prandtl number, Weissenberg numbers, radiation parameter, chemical reaction parameter, thermophoresis parameter, Brownian motion parameter and Lewis number on the fluid velocity, temperature and concentration profiles as well skin friction coefficient, Nusselt number and Sherwood number within the boundary layer. From this we find the way in which magnetic parameter contributes to the increase in local skin fraction, and the decrease in the Nusselt and Sherwood numbers in these cases. The effects of the velocity temperature and concentration profile are obtained and presented graphically.
Rocznik
Strony
223--238
Opis fizyczny
Bibliogr. 27 poz., rys., wykr., wz.
Twórcy
  • Lecturer in Mathematics, Higher College of Technology (IT), Muscat, Oman-133
  • Department of Mathematics, UCS, Osmania University, Hyderabad, TS-500007, India
  • Department of Mathematics, UCS, Osmania University, Hyderabad, TS-500007, India
autor
  • Lecturer in Mathematics, Higher College of Technology (IT), Muscat, Oman-133
  • Department of Mathematics, SAS, Vellore Institute of Technology, Chennai, TN-600127, India
Bibliografia
  • [1] Choi S.U.S., Eastman J.A.: Enhancing thermal conductivity of fluids with nanoparticles. In: Proc. ASME Int. Mechanical Engineering Cong. Exp. San Francisco, Nov. 12-17, 1995.
  • [2] Wong K.V., Leon O.: Applications of nanofluids: Current and future. Adv. Mech. Eng. 2(2010), 519659.
  • [3] Eastman J., Choi S., Li S., Yu W., Thompson L.: Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(2001), 7, 18–20.
  • [4] Das S., Putra N., Roetzel W.: Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf. 46(2003), 8, 51–62.
  • [5] Buongiorno J.: Convective transport in nanofluids. J. Heat Transf.-T. ASME 28(2006), 2, 40–50.
  • [6] Jain S., Patel H., Das S.P: Brownian dynamic simulation for the prediction of effective thermal conductivity of nanofluid. J. Nanopart Res. 11(2009), 7, 67–73.
  • [7] Khan M, Hashim, Alshomrani A.S.: MHD stagnation-point flow of a Carreau fluid and heat transfer in the presence of convective boundary conditions. PLOS ONE. 2016.
  • [8] Mahanthesha B., Gireeshab B.J., Gorla R.S.R.: Unsteady three-dimensional MHDflow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation, viscous dissipation and Joule heating. J. Assoc. Arab. Uni. Basic App. Sci. 23(2017), 75–84.
  • [9] Hashim, Khan M., Alshomrani A.S.: Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder. Eur. Phys. J. E 40(2017), 8. http://dx.doi.org/10.1140/epje/i2017-11495-6
  • [10] Hayat T., Khan M.I., Waqas M., Alsaedi A.: Effectiveness of magnetic nanoparticles in radiative flow of Eyring-Powell fluid. J. Mol. Liq. 231(2017), 126– 133.
  • [11] Hayat T., Sajjad R., Muhammad T., Alsaedi A., Ellahi R.: On MHD nonlinear stretching flow of Powell–Eyring nanomaterial. Results Phys. 7(2017), 535–543.
  • [12] Powell R.E., Eyring H.: Mechanisms for the relaxation theory of viscosity. Nature 154(1944), 427–428.
  • [13] Eldabe N.T.M., Hassan A.A., Mohamed M.A.A.: Effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates. Z. Naturforsch. a 58(2003), 204–210.
  • [14] Patel M., Timol M.G.: Numerical treatment of Powell–Eyring fluid flow using method of satisfaction of asymptotic boundary conditions (MSABC). Appl. Numer. Math. 59(2009), 10, 84–92.
  • [15] Hayat T., Waqas M., Shehzad S., Alsaedi A.: Chemically reactive flow of third grade fluid by an exponentially convected stretching sheet. J. Mol. Liq. 223(2016), 853–860.
  • [16] Hayat T., Zubair M., Waqas M., Alsaedi A., Ayub M.: Importance of chemical reactions in flow of Walter-B fluid subject to non-Fourier flux modeling. J. Mol. Liq. 238(2017), 229–235.
  • [17] Abbasi F.M., Shanakhat I., Shehzad S.A.: Entropy generation analysis for peristalsis of nanofluid with Ohmic heating, temperature dependent viscosity and Hall effects. J. Magn. Magn. Mater. 474(2019), 434–441.
  • [18] Sheikholeslami M., Shehzad S.A.: Numerical analysis of Fe3O4-H2O nanofluid flow in permeable media under the effect of external magnetic source. Int. J. Heat Mass Transf. 118(2018), 182–192.
  • [19] Sekhar K.R., Reddy G.V., Raju C.S.K., Shehzad S.A.: Non-uniform heat source/sink and multiple slips on 3D magnetic-Casson fluid in a suspension of copper nanoparticles over a porous slendering sheet. J. Nanofluids (JON) 7(2018), 3, 469–477.
  • [20] Hayat T., Waqas M., Shehzad S., Alsaedi A.: On 2D stratified flow of an Oldroyd-B fluid with chemical reaction: an application of non-Fourier heat flux theory. J. Mol. Liq. 223(2016), 566–571.
  • [21] Pontes F.A., Miyagawa H.K., Pontes P.C., Macêdo E.N., Quaresma J.N.: Integral transform solution of micropolar magnetohydrodynamic oscillatory flow with heat and mass transfer over a plate in a porous medium subjected to chemical reactions. J. King Saud Univ.-Sci. 31(2019), 1, 114–126.
  • [22] Brewster M.Q.: Thermal Radiative Ttransfer and Properties. Wiley, New York 1992.
  • [23] Khan, W.A., Pop, I.: Boundary layer flow of nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53(2010), 11-12, 2477–2483.
  • [24] Raju C.S.K., Sandeep N.: Unsteady three-dimensional flow of Casson-Carreau fluids past a stretching surface. Alexandria Eng. J. 55(2016), 2, 1115–1126.
  • [25] Zhu J.: Drag and mass transfer for flow of a Carreau fluid past a swarm of Newtonian drops. Int. J. Multiph. Flow 21(1995), 935–940.
  • [26] Georgiou G.C.: The time-dependent, compressible Poiseuille and extrudateswell flows of a Carreau fluid with slip at the wall. J. Non-Newtonian Fluid Mech. 109(2003), 2-3, 93–114.
  • [27] Abd El Naby A.H., Ei Misery A.E.M., AbdEl Kareem M.F.: Separation in the flow through peristaltic motion of a Carreau fluid in uniform tube. Physica A. 343(2004), 2, 1–14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9509ff2f-688b-4d0b-af98-0e6c72f10d75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.