Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The progress of additive manufacturing technology brings about many new questions and challenges. Additive manufacturing technology allows for designing machine elements with smaller mass, but at the same time with the same stiffness and stress loading capacity. By using additive manufacturing it is possible to produce gears in the form of shell shape with infill inside. This study is carried out as an attempt to answer the question which type of infill, and with how much density, is optimal for a spur gear tooth to ensure the best stiffness and stress loading capacity. An analysis is performed using numerical finite element method. Two new infill structures are proposed: triangular infill with five different densities and topology infill designed according to the already known results for 2D cantilever topology optimization, known as Michell structures. The von Mises stress, displacements and bending stiffness are analyzed for full body gear tooth and for shell body gear tooth with above mentioned types of infill structure.
Słowa kluczowe
Rocznik
Tom
Strony
477--483
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- University of Sarajevo, Faculty of Mechanical Engineering, Department of Mechanical Design, Vilsonovo setaliste no. 9, 71000 Sarajevo, Bosnia and Herzegovina
autor
- University of Sarajevo, Faculty of Mechanical Engineering, Department of Mechanical Design, Vilsonovo setaliste no. 9, 71000 Sarajevo, Bosnia and Herzegovina
autor
- University of Sarajevo, Faculty of Mechanical Engineering, Department of Mechanical Design, Vilsonovo setaliste no. 9, 71000 Sarajevo, Bosnia and Herzegovina
autor
- University of Sarajevo, Faculty of Mechanical Engineering, Department of Mechanical Design, Vilsonovo setaliste no. 9, 71000 Sarajevo, Bosnia and Herzegovina
Bibliografia
- [1] D.J. De Solla, “On the Origin of Clockwork, Perpetual Motion Devices, and the Compass”, CreateSpace. Independent Publishing Platform, 2017.
- [2] M.J.T. Lewis, “Gearing in the ancient world” Endeavour 17(3), 110‒115 (1993).
- [3] R. Gołębski and Z. Ivandic, “Analysis of Modification of Spur Gear Profile”, The. Vjesn. 25(2), 643‒648 (2018).
- [4] K. Jian, Z. Li-Ping, and Y. Wen-Qiang, “Optimization Design of a Gear Profile Based on Governing Equations”, Res. J. Appl. Sci. Eng. Technol. 5(19), 4780‒4784 (2013).
- [5] M. Czerniec, “Computer Simulation of the Impact of Optimization of Width in the Helical Cylindrical Gear on Bearing and Durability. Part 1. Height Correction of the Gear Profile”, Adv. Sci. Tech. Res. J. 13(1), 52–59 (2019).
- [6] R. Mohammadkhani, D. Nemati and B. Babaei,”Optimizing Helical Gear Profile for Decreasing Gearbox Noise”, Jobari 2, 6685‒6693 (2012).
- [7] K.V. Frolov and O. I. Kosarev, “Control of Gear Vibrations at Their Source”, Int. Appl. Mech. 39(1), 49‒55 (2003).
- [8] F.S. Samani, M. Molaie, and F. Pellicano, “Nonlinear vibration of the spiral bevel gear with a novel tooth surface modification method”, Meccanica, 54, 1071–1081 (2019).
- [9] S. Gavranovic, D. Hartmann, and U. Wever, “Topology Optimization using GPGPU” EUROGEN 2015. Glasgow, UK, 2015.
- [10] R. Walczak, “Inkjet 3D printing – towards new micromachining tool for MEMS fabrication”, Bull. Pol. Ac.: Tech. 66(2), 179–186 (2018).
- [11] C. Shah, S. Thigale, and R. Shah, “Optimizing weight of a Gear using Topology Optimization”, Int. J. Sci. Eng. Tech. Res. 7(6), 403‒406 (2018).
- [12] R. Ramadani, A. Belsak, M. Kegl, J. Predan, and S. Pehan, “Topology optimization based design of lightweight and low vibration gear bodies”, Int. J. Simul. Model. 17(1), 92‒104 (2018).
- [13] G.I.N. Rozvany and T.Lewinski, “Topology Optimization in Structural and Continuum Mechanics”, Springer Science & Business Media, 2013.
- [14] A. J. Muminovic, A. Muminovic, E. Mesic, I. Saric, and N. Pervan, “Spur Gear Tooth Topology Optimization: Finding Optimal Shell Thickness for Spur Gear Tooth produced using Additive Manufacturing”, TEM Journal 8(3), 783‒794 (2019).
- [15] S. Ole, N. Aage and E. Andreassen, “On the (non-)optimality of Michell structures”, Struct. Multidisc. Optim. 54(2), 361‒373 (2016).
- [16] A. Piekarczuk, “Test-supported numerical analysis for evaluation of the load capacity of thin-walled corrugated profiles”, Bull. Pol. Ac.: Tech. 65(6), 791–798 (2017).
- [17] S.J. Matysiak, R. Kulchytsky-Zhygailo, and D.M. Perkowski, “Stress distribution in an elastic layer resting on a Winkler foundation with an emptiness”, Bull. Pol. Ac.: Tech. 66(5), 721–727 (2018).
- [18] W. Buczkowski, A. Szymczak-Graczyk, and Z. Walczak, “Experimental validation of numerical static calculations for a monolithic rectangular tank with walls of trapezoidal cross-section”, Bull. Pol. Ac.: Tech. 65(6), 799–804 (2017).
- [19] M.J. Ratnadeepsinh, M.C. Dispeshkumar, and D.L. Jignesh, “Bending Stress Analysis of Bevel Gears”, Int. J. Innov. Res. Sci. Eng. Technol. 2(7), 341‒346 (2013).
- [20] M.R. Lias, T.V.V.L.N. Rao, M. Awang, and M.A. Khan, “The stress distribution of gear tooth due to axial misalignment condition”, J. Appl. Sci. 12(23), 2404‒2410 (2012).
- [21] D. Jian, J.D. Wang, and I.M. Howard, “Error Analysis on Finite Element Modeling of Involute Spur Gears”, J. Mech. Des. 128(1), 90‒97 (2006).
- [22] V. Singh, S. Chauhan, and A. Kumar, “Finite element analysis of a spur gear tooth using Ansys and stress reduction by stress relief hole”, Int. J. Eme. Eng. Dev. 2(6), 491‒495 (2012).
- [23] K.N. Naik and D. Dolas, “Static Analysis Bending Stress on Gear Tooth Profile By Variation of Gear Parameters With The Help of FEA”, Int. J. Adv. Res. Technol. 3(6), 132‒136 (2014).
- [24] A.R. Hassan, “Contact Stress Analysis of Spur Gear Teeth Pair”, World Academy of Science, Engineering and Technology 58, 611‒616 (2009).
- [25] A.J. Muminovic, I. Saric, and N. Repcic, “Numerical Analysis of Stress Concentration Factors”, Procedia Eng. 100, 707‒713 (2015).
- [26] A.J. Muminovic, I. Saric, and N. Repcic, “Analysis of Stress Concentration Factors Using Different Computer Software Solutions”, Procedia Eng. 69, 609–615 (2014).
- [27] G.R. Liu and S.S. Quek, “The Finite Element Method (2nd Edition)”, Butterworth-Heinemann, Oxford, 2014.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95069723-da17-49c7-a42d-4f351947c240