PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic defect detection and characterization by thermographic images based on damage classifiers evaluation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the framework of non-destructive evaluation (NDE), an accurate and precise characterization of defects is fundamental. This paper proposes a novel method for characterization of partial detachment of thermal barrier coatings from metallic surfaces, using the long pulsed thermography (LPT). There exist many applications, in which the LPT technique provides clear and intelligible thermograms. The introduced method comprises a series of post-processing operations of the thermal images. The purpose is to improve the linear fit of the cooling stage of the surface under investigation in the logarithmic scale. To this end, additional fit parameters are introduced. Such parameters, defined as damage classifiers, are represented as image maps, allowing for a straightforward localization of the defects. The defect size information provided by each classifier is, then, obtained by means of an automatic segmentation of the images. The main advantages of the proposed technique are the automaticity (due to the image segmentation procedures) and relatively limited uncertainties in the estimation of the defect size.
Rocznik
Strony
219--242
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab., wykr.
Twórcy
  • Politecnico di Bari University, Department of Mechanics, Mathematics and Management, Via E. Orabona 4, 70125 Bari, Italy
  • Politecnico di Bari University, Department of Mechanics, Mathematics and Management, Via E. Orabona 4, 70125 Bari, Italy
  • Politecnico di Bari University, Department of Mechanics, Mathematics and Management, Via E. Orabona 4, 70125 Bari, Italy
  • Politecnico di Bari University, Department of Mechanics, Mathematics and Management, Via E. Orabona 4, 70125 Bari, Italy
Bibliografia
  • [1] Meola, C., Carlomagno, G.M. (2004). Recent advances in the use of infrared thermography. Measurement Science and Technology, 15(9), 27-58.
  • [2] Vavilov, V., Burleigh, D.D. (2015). Review of Pulsed Thermal NDT: Physical principles, Theory and data processing. NDT & E International, 73, 28-52.
  • [3] Balageas, D.L., Roche, J.M. (2014). Common tools for quantitative time-resolved pulse and step-heating thermography - part I: theoretical basis. Quantitative InfraRed Thermography Journal, 11(1), 43-56.
  • [4] De Capua, C., Morello, R., Jablonski, I. (2018). Active and eddy current pulsed thermography to detect surface crack and defect in historical and archaeological discoveries. Measurement, 116, 676-684.
  • [5] Zheng, K., Chang, Y.S., Yao, Y. (2015). Defect detection in CFRP structures using pulsed thermographic data enhanced by penalized least squares methods. Composites Part B: Engineering, 79,351-358.
  • [6] Shepard, S.M. (2001). Advances in pulsed thermography. Proc. of SPIE Thermosense XXIII, 4360, 511-515.
  • [7] Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Ahmed, T., Wang, T. (2002). Enhancement and reconstruction of thermographic NDT data. Proc. SPIE Thermosense XXIV, 4710, 531-535.
  • [8] Maldague, X., Galmiche, F., Ziadi, A. (2002). Advances in pulsed phase thermography. Infrared Physics & Technology, 43(3-5), 175-181.
  • [9] Ibarra-Castanedo, C., Maldague, X. (2004). Pulsed phase thermography reviewed. Quantitative InfraRed Thermography Journal, 1(1), 47-70.
  • [10] Rajic, N. (2002). Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Composite Structures, 58(4), 521-528.
  • [11] Palumbo, D., Galietti, U. (2016). Damage investigation in composite materials by means of new thermal data processing procedures: damage investigation with stimulated thermography. Strain, 52(4), 276-285.
  • [12] Roche, J.M., Balageas, D.L. (2015). Common tools for quantitative pulse and step-heating thermography - part II: experimental investigation. Quantitative InfraRed Thermography Journal, 12(1), 1-23.
  • [13] Vavilov, V. (1980). Infrared non-destructive testing of bonded structures: aspects of theory and practice. British Journal of Non-destructive Testing, 22(4), 175-183.
  • [14] Vavilov, V., Taylor, R. (1982). Theoretical and practical aspects of the thermal non-destructive testing of bonded structures. Research Techniques in Nondestructive Testing, 5, 239-279.
  • [15] Almond, D.P., Delpech, P., Beheshtey, M.H., Wen, P. (1996). Quantitative determination of impact damage and other defects in carbon fiber composites by transient thermography. Proc. of SPIE Non-destructive Evaluation of Materials and Composites, 2944, 256-264.
  • [16] Grys, S., Minkina, W., Vokorokos, L. (2015). Automated characterisation of subsurface defects by active IR thermographic testing - Discussion of step heating duration and defect depth determination. Infrared Physics & Technology, 68, 84-91.
  • [17] Palumbo, D., Tamborrino R., Galietti, U. (2017). Coating defect evaluation based on stimulated thermography. Proc. of SPIE Thermosense: Thermal Infrared Applications XXXIX, 10214X.
  • [18] Dinardo, G., Fabbiano, L., Tamborrino, R., Vacca, G. (2019). Automatic defect detection from thermographic non-destructive testing. Journal of Physics: Conference Series, 1249(1), 012010.
  • [19] Preetha, M.M.S.J., Suresh, L.P., Bosco, M.J. (2012). Image segmentation using seeded region growing. Proc. of International Conference on Computing, Electronics and Electrical Technologies (ICCEET), 576-583.
  • [20] Huang, M., Yu, W., Zhu, D. (2012). An improved image segmentation algorithm based on the Otsu method. Proc. of 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel Distributed Computing, 135-139.
  • [21] Feng, Q., Gao, B., Lu, P., Woo, W.L., Yang, Y., Fan, Y., Qiu, X., Gu, L. (2018). Automatic seeded region growing for thermography debonding detection of CFRP. NDT & E International, 99, 36-49.
  • [22] Grys, S. (2018). Determining the dimension of subsurface defects by active infrared thermography - experimental research. Journal of Sensors and Sensor Systems, 7(1), 153-160.
  • [23] JCGM 100:2008 (2008) Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement. Joint Committee for Guides in Metrology.
  • [24] Otsu, N. (1979). A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.
  • [25] Yang, X., Shen, X., Long, J., Chen, H. (2012). An improved median-based Otsu image thresholding algorithm. AASRI Procedia, 3, 468-473.
  • [26] Holland, P.W., Welsch, R.E. (1977). Robust regression using iteratively reweighted least-squares. Communications in Statistics - Theory and Methods, 6(9), 813-827.
  • [27] Hinich, M.J., Talwar, P. P. (1975). A simple method for robust regression. Journal of the American Statistical Association, 70(349), 113-119.
  • [28] Dražić, S., Sladoje,N., Lindblad, J. (2016). Estimation of Feret’s diameter from pixel coverage representation of a shape. Pattern Recognition Letters, 80, 37-45.
  • [29] Borsotti, M., Campadelli, P., Schettini, R. (1998). Quantitative evaluation of color image segmentation results. Pattern Recognition Letters, 19, 741-747.
  • [30] Gao, H., Tang, Y., Jing, L., Li, H., Ding, H. (2017). A novel unsupervised segmentation quality evaluation method for remote sensing images. Sensors MDPI, 17(10), 2427.
  • [31] Hao, J., Shen, Y., Xu, H., Zou, J. (2009). A region entropy based objective evaluation method for image segmentation. Proc. of IEEE Instrumentation and Measurement Technology Conference, 373-377.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9504bb3d-103b-497b-a2a1-47146e54d95a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.