PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of Fabrics to Improve the Acoustic Absorption: Influence of the Woven Fabric Thread Density Over a Nonwoven

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Noise is frequently unnoticed, but it is one of the causes of unhealth for human beings reducing people’s quality of life. There are many materials that can be considered as acoustic absorbents. Textiles can be used to both improve the acoustic quality of and to decorate the room where they have been placed. In this study, we used some fabrics with 15, 20 and 30 ends/cm and 15, 20 and 30 picks/cm. The acoustic absorption coefficient was measured when the fabric was added as a resistive layer on top of a nonwoven made of polyester fiber. Results evidence that these fabrics can be efficiently used to modify the acoustic absorption of the nonwoven. Sound absorption coefficients measured via the impedance tube method show that these modifications occur. The results show how it is possible to improve the acoustic characteristics of a simple nonwoven to obtain sound absorption coefficients close to values of 1 at different frequencies by choosing a fabric with the appropriate combination of warp and weft count.
Słowa kluczowe
EN
acoustics   fabric   warp   weft   nonwoven  
Rocznik
Strony
269--280
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
  • Dpto. de Ingeniería Textil y Papelera. Universitat Politècnica de Valencia. Universitat Politècnica de Valencia. Alcoy. Spain
  • Dpto. de Mecánica de los Medios Continuos y Teoría de Estructuras. Universitat Politècnica de Valencia. Alcoy. Spain
autor
  • Dpto. de Ingeniería Textil y Papelera. Universitat Politècnica de Valencia. Universitat Politècnica de Valencia. Alcoy. Spain
  • Dpto. de Ingeniería Textil y Papelera. Universitat Politècnica de Valencia. Universitat Politècnica de Valencia. Alcoy. Spain
Bibliografia
  • [1] Tajadura-Jiménez, A., Larsson, P., Väljamäe, A., Västfjäll, D., & Kleiner, M., (2010) When room size matters: acoustic influences on emotional responses to sounds. Emotion, 10(3), 416.
  • [2] Arenas J. P., Crocker, M.J., (2010) Recent trends in porous sound absorbing materials. Sound and Vibration, 13, 44-7.
  • [3] Lundgren, L., Moberg, C. and Lidén C., (2014). Do insulation products of man-made vitreous fibres still cause skin discomfort? Contact dermatitis, 70(6), 351-360.
  • [4] Delany, M.E., Bazley, E.N., (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3, 105–116.
  • [5] Attenborough, K., (1982). Acoustical Characteristics of Porous Materials. Physics Reports, 82(3), 179-227.
  • [6] Yang, S., Yu, W., Pan, N., (2010). Investigation of the sound absorbing behavior of fibre assemblies. Textile Research Journal, 81(7), 673–682.
  • [7] Ramis, J., Alba, J. Del Rey, R., Escuder, E., & Sanchís, V. J., (2010). New absorbent material acoustic based on kenaf fibre. Materiales de Construcción, 60 (299), 133-143.
  • [8] Chen, Y., Jiang, N., (2007). Carbonized and activated nonwovens as high-performance acoustic materials: Part I - noise absorption. Textile Research Journal, 77, 785–791.
  • [9] Garai, M., Pompoli, F. A., (2005). Simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics, 66, 1383–1398.
  • [10] Narang, P. P., (1995). Material parameter selection in polyester fibre insulation for sound transmission and absorption. Applied Acoustics, 45, 335–358.
  • [11] M. Küçük, Y. Korkmaz. (2012). The effect of physical parameters on sound absorption properties of natural fibre mixed nonwoven. Textile Research Journal, 82, 2043-2053.
  • [12] Labino, D. “Decorative acoustical materials”, U.S. Patent 2 868 684. 1959.
  • [13] Takewa et al. “Sound absorber”, U.S. Patent 5 512 715, 1996.
  • [14] Fox, A. R., Olson, D. A., Moore, E. M., Berrigan, M. R., Nelson, D. L., Eaton, B. W., & Mahoney, W. S. “Multilayer articles having acoustical absorbance properties and methods of making and using the same”. U.S. Patent 7 757 811 B2, 20-07. 2010. Also published as: EP1945445A1, EP1945445A4, US7691168, US20080230309, US20100043639 y WO2007047263A1
  • [15] Ogawa, M., Fujii, M., & Mizutani, N. “Sound absorbing material, multilayer sound absorbing material, molded product of multilayer sound absorbing material, sound absorbing interior material, and sound absorbing floor covering material” U.S. Patent 8 393 438 B2, 2013. Also published as: B2CA2739408A1, CN102089802A, EP2333766A1, EP2333766A4, EP2333766B1, US20110186381, WO2010038486A1, WO2010038491A1,
  • [16] Zwikker, C., Kosten, C. (1949). Sound Absorbing Materials. Elsevier, Nueva York. cap.II.
  • [17] Benarek, L.L., (1971). Noise and Vibration Control. Mc Graw Hill, New York, p.267.
  • [18] Maa, D. Y., (1975). Theory and design of microperforated panel sound-absorbing constructions. Scentia Sinica,17, 55-71.
  • [19] Ruiz, H., Cobo, P., & Jacobsen, F. (2011). Optimization of multiple-layer microperforated panels by simulated annealing. Applied Acoustics, 72, 772-776.
  • [20] Sakagami, K. Sakagami, K., Kobatake, S., Kano, K. I., Morimoto, M., & Yairi, M. (2011). Sound absorption characteristics of a single microperforated panel absorber backed by a porous absorbent layer. Acoustics Australia, 39(3), 95-100.
  • [21] Maa, D.Y., (1998). Potential of microperforated panel absorbers. Journal of Acoustical Society of America, 104, 2861-2866
  • [22] Pfretzschner, J. et al. (2006). Microperforated insertion units: an alternative strategy to design microperforated panels. Applied Acoustics, 67, 62-73.
  • [23] Cobo, P., Pfretzschner, J., Cuesta, M., & Anthony, D. K. (2004). Hybrid passive-active absorption using microperforated panels. Journal of Acoustical Society of America, 116, 2118-2125.
  • [24] Lui, J., Herrin, D.W., (2010). Enhancing micro-perforated panel attenuation by partitioning the adjoining cavity. Applied Acoustics, 71.2, 120-127.
  • [25] Takahashi, D., Tanaka, M., (2002). Flexural vibration of perforated plates and porous elastic materials under acoustic loading. Journal of Acoustical Society of America, 112, 1456–1464.
  • [26] Lee, Y. Y., Lee, E. W. M., & Ng, C. F. (2005). Sound Absortion of a finite flexible micro-perforated panel backed by an air cavity. Journal of Sound and Vibration, 287, 227-243.
  • [27] Bravo, T., Maury, C., Pinhède, C., (2012) Vibroacoustic properties of thin micro-perforated panel absorbers. Journal of Acoustical Society of America, 132 (2), 789-798.
  • [28] Li, G., Mechefske, C.K., (2010). A comprehensive experimental study of micro-perforated panel. Magnetic Resonance Materials in Physics, Biology and Medicine. 23,177–185.
  • [29] Fuchs, H. et al. Fuchs, H., & Zha, X. “Sound absorbing glass building component or transparent synthetic glass building component”, U.S. Patent 5 700 527 A, 1997.
  • [30] Wood, K.H., Martinson, P.A., “Shaped microperforated polymeric film sound absorbers and methods of manufacturing the same”, U.S. Patent 6 598 701 B1, 29.07.2003. Also published as EP1295282A1, WO2002003375A1.
  • [31] Pfretzeschner, J., Cobo, P., “Insertion units which are microperforated for use as sound absorbers”. WO 2006021605 A1.
  • [32] Vigran, T.E. Petersen O. “Sound Absorbent”. Solicitud U. S. Patent 20 080 264 720 A1, 2005. Also published as: CA2602301A1, EP1861554A1, EP1861554A4, US7677359, y WO2006101403A1.
  • [33] Shoshani, Y., Wilding, M. A., (1991). Effect of pile parameters on the noise absorption capacity of tufted carpets. Textile Research Journal, 736, 736–742.
  • [34] Dias, T., Monaragala, R., (2006). Sound absorption in knitted structures for interior noise reduction in automobiles. Measurement Science Technology, 17, 2499–2505
  • [35] Dias, T., Monaragala, R., Lay, E., (2007). Analysis of thick spacer fabrics to reduce automobile interior noise Measurement Science Technology, 18, 1979–1991.
  • [36] Liu, J., Hu, H. (2010). Sound Absorption Behavior of Knitted Spacer Fabrics. Textile Research Journal, 80(18), 1949–1957.
  • [37] Soltani, P., Zerrebini, M. (2012). The analysis of acoustical characteristics and sound absorption coefficient of woven fabrics. Textile Research Journal, 82, 875–882.
  • [38] Shoshani, Y., Rosenhouse, G. (1990). Noise absorption by woven fabrics. Applied Acoustics. 30, 321-333.
  • [39] Kang, J., Fuchs, H.V. (1999). Predicting the absorption of open wave textiles and micro-perforated membranes backed by an air space. Journal of Sound and Vibration, 220(5), 905-920.
  • [40] Pieren, R. (2012). Sound absorption modeling of thin woven fabrics backed by an air cavity. Textile Research Journal, 82, 864-874.
  • [41] Villamil, H. L. R., Cobo, P., Dupont, T., & Leclaire, P. (2012). Acoustic properties of perforated plates and screens, in Proceedings of the Acoustics. Nantes Conference. Nantes, France; 2012, April 23-27.
  • [42] Hanna, Y.I., Kandil, M.M. (1991). Sound absorbing double curtains from local textile materials. Applied Acoustics, 34, 281-291
  • [43] Mouraret, D.; Tisseyre, A. “Sound absorbing fabric”, US 7 976 946 – B2, 2011.
  • [44] Nonogi M., SASAKI M. NORO T. “Multilayer sound absorbing structure comprising mesh layer”, U. S. Patent 8 573 358 B2, 2013.
  • [45] Sahnoune, F. “Nappe textile capable a absorber des ondes sonores”, WO Patent 2013/007908 2013
  • [46] Cox, T. J., D’Antonio, P. (2009). Acoustic Absorbers and Diffusers: Theory, Design and Application. Taylor and Francis, New York.
  • [47] Shoshani, Y. K. (1991). Noise absorption by a combination of woven and nonwoven fabrics. Journal of Textile Institute, 82, 500–503
  • [48] Chevillote F. (2013). Controlling sound absorption by an upstream resistive layer. Applied Acoustics. 73, 56–60.
  • [49] Kitchen, D.S. “Acoustically coupled non-woven composite”. U.S. Patent 8 322 487 B1, 4. 12. 2012.
  • [50] Coates, M.W., Kierzkowski M.H., Gibbons P.J., et al. “Sound absorption material and method of manufacturing sound absorption material”. U.S. Patent 8 365 862 B2, 05.02.2013. Published as EP2297412A4, US20110139543, US20130192921, WO2009140713A1
  • [51] Crocker, M. J. “Handbook of acoustics”. John Wiley & Sons, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-950240f3-816a-4398-8c59-df1bb84d2f9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.