Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article we consider the Burgers equation with some class of perturbations in one space dimension. Using various energy lunctionals in appropriate weighted Sobolev spaces rewritten in the variables [formula] and log τ, we prove that the large time behavior of solutions is given by the sell-similar solutions ol the associated Burgers equation.
Czasopismo
Rocznik
Tom
Strony
41--80
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Universite Tunis El Manar Departement de Mathematiques Institut Superieur d'Informatique 2 rue Abou Railian Bayrouni, 2080 Ariana, Tunisia
- Universite de Tunis El Manar Faculte des Sciences de Tunis UR13ES32 Analyse non lineaire et geometrie 2092 Tunis, Tunisia
autor
- Department of Basic Sciences Deanship of Preparatory and Supporting Studies Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam, Saudi Arabia
autor
- Universite de Tunis El Manar Faculte des Sciences de Tunis UR13ES32 Analyse non lineaire et geometrie 2092 Tunis, Tunisia
Bibliografia
- [1] J.M. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc. 63 (1977), 370-373.
- [2] Y. Brenier, R. Natalini, M. Puel, On a relaxation approximation of the incompressible Navier-Stokes equations, Proc. Amer. Math. Soc. 132 (2004), 1021-1028.
- [3] J. Bricmont, A. Kupiainen, Stable non Gaussian diffusive profiles, Nonlinear Anal. Theory Methods Appl. 26 (1996), 583-593.
- [4] J. Bricmont, A. Kupiainen, G. Lin, Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Communications on Pure and Applied Mathematics, 47 (1994), 893-922.
- [5] J.M. Burgers, A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics (1948), 171-199.
- [6] A. Doelman, B. Sandstede, A. Scheel, G. Schneider, The dynamics of modulated wave trains, Mem. Amer. Math. Soc. 199 (2009), 934.
- [7] M. Escobedo, O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Analysis T.M.A. 11 (1987), 1103-1133.
- [8] M. Escobedo, O. Kavian, H. Matano, Large time behavior of solutions of a dissipative semi-linear heat equation, Comm. Partial Differential Equations 20 (1995), 1427-1452.
- [9] M. Escobedo, E. Zuazua, Large time behavior for convection-diffusion equations in Rn, J. Funct. Anal. 100 (1991), 119-161.
- [10] C. Escudero, Blow-up of the hyperbolic Burgers equation, J. Stat. Phys. 127 (2007), 327-338.
- [11] Th. Gallay, G. Rauguel, Scaling variables and asymptotic expansions in damped wave equations, J. Differential Equations 150 (1998), 42-97.
- [12] Th. Gallay, G. Rauguel, Scaling variables and stability of hyperbolic fronts, Sf AM J. Math. Anal. 32 (2000), 1-29.
- [13] Th. Gallay, C.E. Wayne, Invariant Manifolds and the Long Time Asymptotics of the Navier-Stokes and Vorticity equations on R2, Arch. Rational Mech. Anal 163 (2002), 209-258.
- [14] Th. Gallay, C.E. Wayne, Long-time asymptotics of the Navier-Stokes equation in R2 and R3, Z. Angew. Math. Mech 86 (2006), 256-267.
- [15] K.P. Hadeler, Reaction Telegraph Equations and Random Walk Systems, [in:] Stochastic and Spatial Structures of Dynamical Systems, S. van Strien and S. Verduyn Lunel (eds), Royal Academy of the Netherlands, North Holland, Amsterdam, 1996.
- [16] M.A. Hamza, Asymptotically self-similar solutions of the damped wave equation, Nonlinear Anal. 73 (2010), 2897-2916.
- [17] M.A. Hamza, Asymptotic profiles for the third-grade fluids equations in one space dimension, Differential and Integral Equations 28 (2015), 155-200.
- [18] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, UK, 1934; reprinted, 1964.
- [19] E. Hopf, The partial differential equation ut +uux = /j,uxx, Comm. Pure Appl. Math. 3 (1950), 201-230.
- [20] B. Jaffal-Mourtada, Long time asymptotics of the second grade fluid equations on R2, Dyn. of PDE 8 (2011), 185-223.
- [21] S. Kamin, L.A. Peletier, Large time behavior of solutions of the heat equation with absorption, Ann. Sc. Norm. Sup. Piza 12 (1985), 393-408.
- [22] G. Karch, Self-similar large time behavior of solutions to Korteweg-de Vries-Burgers equation, Nonlinear Anal. 35 (1991), 199-219.
- [23] M. Mihailescu, V. Radulescu, D. Repovs, On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting, J. Math. Pures Appl. 93 (2010), 132-148.
- [24] J.D. Murray, Mathematical Biology, 2nd ed., Biomathematics, vol. 19, Springer-Verlag, New York, Berlin, 1993.
- [25] R. Orive, E. Zuazua, Long-time behavior of solutions to a non-linear hyperbolic relaxation system, J. Differential Equations 228 (2006), 17-38.
- [26] M. Paicu, G. Raugel, A hyperbolic perturbation of the Navier-Stokes equations, ESAIM Proceedings 21 (2007), 65-87.
- [27] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol. 44, Springer-Verlag, New York, 1983.
- [28] R. Prado, E. Zuazua, Asymptotic expansion for the generalized Benjamin-Bona-Mahony--Burger equation, Differential and Integral Equations 15 (2002), 1409-1434.
- [29] V. Radulescu, D. Repovs, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal. 75 (2012), 1524-1530.
- [30] V. Radulescu, D. Repovs, Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.
- [31] L. Sapa, Existence, uniqueness and estimates of classical solutions to some evolutionary system, Opuscula Math. 35 (2015) 6, 935-956.
- [32] J.L. Vazquez, E. Zuazua, Complexity of large time behavior of evolutions equations with bounded data, Chinese Annals of Mathematics 23, ser. B (2002), 293-310.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94fad850-e419-4760-add6-1d227af255d0