PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel High-Nitrogen Content Energetic Compounds with High Detonation and Combustion Performance for use in Plastic Bonded Explosives (PBXs) and Composite Solid Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Five novel high-nitrogen content (N>50%) derivatives of tetrazole are introduced in the study reported here. The assessment of various properties of these compounds were performed, which include physicothermal properties (crystal density, condensed phase heat of formation, melting point, enthalpy of fusion and entropy of fusion), detonation performance (velocity and pressure of detonation, detonation temperature and power), sensitivity with respect to external stimuli (impact, shock, friction and electric spark) and combustion performance (specific impulse). The predicted results of these compounds are compared with dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50) and octanitro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) as a high performance ionic salt and a neutral explosive, respectively. The novel energetic compounds were found to have higher detonation and combustion performance than either TKX-50 or HMX. The new explosives are therefore good candidates to obtain high detonation and combustion performance in plastic bonded explosives (PBXs) and composite solid propellants, respectively.
Rocznik
Strony
364--375
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Malek-ashtar University of Technology, 83145/115 Shahin-shahr, Islamic Republic of Iran
autor
  • Malek-ashtar University of Technology, 83145/115 Shahin-shahr, Islamic Republic of Iran
  • Malek-ashtar University of Technology, 83145/115 Shahin-shahr, Islamic Republic of Iran
autor
  • Malek-ashtar University of Technology, 83145/115 Shahin-shahr, Islamic Republic of Iran
autor
  • Chemistry Department, Payame Noor University, 19395-4697 Tehran, Islamic Republic of Iran
Bibliografia
  • [1] Klapötke, T. M.; Sabaté, C. M. Nitrogen-rich Tetrazolium Azotetrazolate Salts: A New Family of Insensitive Energetic Materials. Chem. Mater. 2008, 20(5): 1750-1763.
  • [2] Liu, L.; Zhang, Y.; Li, Z.; Zhang, S. Nitrogen-rich Energetic 4-R-5-nitro-1,2,3-triazolate salts (R=–CH3,–NH2,–N3,–NO2 and –NHNO2) as High Performance Energetic Materials. J. Mater. Chem. A 2015, 3(28): 14768-14778.
  • [3] Wu, Q.; Pan, Y.; Xia, X.; Shao, Y.; Zhu, W.; Xiao, H. Theoretic Design of 1,2,3,4-tetrazine-1,3-dioxide-based High-energy Density Compounds with Oxygen Balance Close to Zero. Struct. Chem. 2013, 24(5): 1579-1590.
  • [4] Klapötke, T. M.; Sabaté, C. M. Bistetrazoles: Nitrogen-rich, High-performing, Insensitive Energetic Compounds. Chem. Mater. 2008, 20(11): 3629-3637.
  • [5] Zheng, C.; Chu, Y.; Xu, L.; Lei, W.; Wang, F.; Xia, M. Synthesis and Theoretical Studies on Nitrogen-rich Salts of Bis [4-nitraminofurazanyl-3-azoxy] azofurazan (ADNAAF). J. Mol. Model. 2017, 23(1): 12.
  • [6] Agrawal, J. P. High Energy Materials, Propellants, Explosives and Pyrotechnics. Wiley-VCH, 2010; ISBN: 978-3-527-32610-5.
  • [7] Sikder, A. K.; Maddala, G.; Agrawal, J. P.; Singh, H. Important Aspects of Behaviour of Organic Energetic Compounds: a Review. J. Hazard. Mater. 2001, 1-26.
  • [8] Klapötke, T. M.; Piercey, D. G. 1, 1′-Azobis (tetrazole): a Highly Energetic Nitrogen-rich Compound with a N10 Chain. Inorg. Chem. 2011, 50(7): 2732-2734.
  • [9] Karaghiosoff, K.; Klapötke, T. M.; Sabaté, C. M. Nitrogen‐rich Compounds in Pyrotechnics: Alkaline Earth Metal Salts of 5,5′‐Hydrazine‐1,2‐diylbis (1Htetrazole). Eur. J. Inorg. Chem. 2009, 2009(2): 238-250.
  • [10] Li, X.-H.; Zheng, M.; Zhang, R.-Z.; Zhang, X.-Z. Theoretical Investigation of a Series of Bis(1H-tetrazol-5-yl) Furazan and Bis(1H-tetrazol) Derivatives as High-energy-density Materials. Mol. Phys. 2016, 114(23): 3437-3447.
  • [11] Wu, Q.; Zhu, W.; Xiao, H. Molecular Design of Tetrazole-and Tetrazine-based High-Density Energy Compounds with Oxygen Balance Equal to Zero. J. Chem. Eng. Data 2013, 58(10): 2748-2762.
  • [12] Lin, Q.-H.; Li, Y.-C.; Qi, C.; Liu, W.; Wang, Y.; Pang, S.-P. Nitrogen-rich Salts Based on 5-Hydrazino-1H-tetrazole: a New Family of High-density Energetic Materials. J. Mater. Chem. A 2013, 1(23): 6776-6785.
  • [13] Zhu, W.; Yan, Q.; Li, J.; Cheng, B.; Shao, Y.; Xia, X.; Xiao, H. Prediction of the Properties and Thermodynamics of Formation for Energetic Nitrogen‐Rich Salts Composed of Triaminoguanidinium Cation and 5‐Nitroiminotetrazolate‐ased Anions. J. Comput. Chem. 2012, 33(22): 1781-1789.
  • [14] Zhang, X.; Zhu, W.; Wei, T.; Zhang, C.; Xiao, H. Densities, Heats of Formation, Energetic Properties, and Thermodynamics of Formation of Energetic Nitrogenrich Salts Containing Substituted Protonated and Methylated Tetrazole Cations:a Computational Study. J. Phys. Chem. C 2010, 114(30): 13142-13152.
  • [15] Fischer, D.; Klapötke, T. M.; Piercey, D. G.; Stierstorfer, J. Synthesis of 5‐Aminotetrazole‐1 N‐oxide and Its Azo Derivative: A Key Step in the Development of New Energetic Materials. Chem. – Eur. J. 2013, 19(14): 4602-4613.
  • [16] Sućeska, M. Calculation of Detonation Parameters by EXPLO5 Computer Program, Mater. Sci. Forum 2004, 465: 325-330.
  • [17] Fan, X.; Bi, F.; Zhang, M.; Li, J.; Pang, W.; Wang, B.; Ge, Z. Introducing Tetrazole Salts as Energetic Ingredients for Rocket Propulsion. In: Chemical Rocket Propulsion. Springer 2017, pp. 165-177; ISBN 9783319277462.
  • [18] Nicolich, S.; Samuels. P.; Damavarapu, R.; Paraskos, A.; Cooke, E.; Stepanov, V.; Cook, P.; Caflin, K.; Duddu, R. Dihydroxylammonium 5,5′-bis-tetrazole-1,1′-diolate (TKX-50) Synthesis and Lab Scale Characterization. Insensitive Munitions and Energetic Materials Technical Symposium, Insensitive Munitions European Manufacturers Group, Rome, Italy 2015.
  • [19] Fischer, N.; Fischer, D.; Klapötke, T. M.; Piercey, D. G.; Stierstorfer, J. Pushing the Limits of Energetic Materials – the Synthesis and Characterization of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate. J. Mater. Chem. 2012, 22(38): 20418-20422.
  • [20] Rice, B. M.; Byrd, E. F. Evaluation of Electrostatic Descriptors for Predicting Crystalline Density. J. Comput. Chem. 2013, 34(25): 2146-2151.
  • [21] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, J. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;, Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09 (revision A. 02) Gaussian, Inc., Wallingford, 2009.
  • [22] Jafari, M.; Keshavarz, M. H. Simple Approach for Predicting the Heats of Formation of High Nitrogen Content Materials. Fluid Phase Equilibria 2016, 415:166-175.
  • [23] Keshavarz, M. H. Approximate Prediction of Melting Point of Nitramines, Nitrate Esters, Nitrate Salts and Nitroaliphatics Energetic Compounds. J. Hazard. Mater. 2006, 138(3): 448-451.
  • [24] Oskoei, Y. M.; Keshavarz, M. H. Improved Method for Reliable Predicting Enthalpy of Fusion of Energetic Compounds. Fluid Phase Equilib. 2012, 326: 1-14.
  • [25] Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. The Properties of Gases and Liquids. Vol. 5. Mcgraw-Hill New York 2001; ISBN 9780071189712.
  • [26] Keshavarz, M. H.; Zakinejad, S.; Esmailpour, K. An Improved Simple Method for Prediction of Entropy of Fusion of Energetic Compounds. Fluid Phase Equilib. 2013, 340: 52-62.
  • [27] Keshavarz, M. H. Prediction Method for Specific Impulse Used as Performance Quantity for Explosives. Propellants Explos. Pyrotech. 2008, 33(5): 360-364.
  • [28] Keshavarz, M. H.; Pouretedal, H. Predicting Detonation Velocity of Ideal and Less Ideal Explosives via Specific Impulse. Indian J. Eng. Mater. Sci. 2004, 11(5): 429-432.
  • [29] Gill, R.; Asaoka, L.; Baroody, E. On Underwater Detonations, 1. A New Method for Predicting the CJ Detonation Pressure of Explosives. Journal of Energetic Materials, 1987, 5(3-4): 287-307.
  • [30] Keshavarz, M. H. Detonation Temperature of High Explosives from Structural Parameters. J. Hazard. Mater. 2006, 137(3): 1303-1308.
  • [31] Keshavarz, M. H.; Seif, F. Improved Approach to Predict the Power of Energetic Materials. Propellants Explos. Pyrotech. 2013, 38(5): 709-714.
  • [32] Kamalvand, M.; Keshavarz M. H.; Jafari, M. Prediction of the Strength of Energetic Materials Using the Condensed and Gas Phase Heats of Formation. Propellants Explos. Pyrotech. 2010, 40(4): 551-557.
  • [33] Keshavarz, M. H. A New General Correlation for Predicting Impact Sensitivity of Energetic Compounds. Propellants Explos. Pyrotech. 2013, 38(6): 754-760.
  • [34] Keshavarz, M. H.; Motamedoshariati, H.; Pouretedal H. R., Tehrani M. K.; Semnani A. Prediction of Shock Sensitivity of Explosives Based on Small-scale Gap Test. J. Hazard. Mater. 2007, 145(1): 109-112.
  • [35] Keshavarz, M. H.; Hayati, M.; Ghariban-Lavasani S.; Zohari, N. A New Method for Predicting the Friction Sensitivity of Nitramines. Cent. Eur. J. Energ. Mater. 2015, 12(2): 215-227.
  • [36] Keshavarz, M. H., Moghadas, M. H.; Kavosh Tehrani, M. Relationship between the Electrostatic Sensitivity of Nitramines and Their Molecular Structure. Propellants Explos. Pyrotech. 2009, 34(2): 136-141.
  • [37] Dobratz, B. LLNL Explosives Handbook: Properties of Chemical Explosives and Explosives and Explosive Simulants. Lawrence Livermore National Lab., CA (USA) 1981; ISBN 9789994811021.
  • [38] Akhavan, J. The Chemistry of Explosives. 3rd ed., Royal Society of Chemistry, 2011; ISBN 9781849733304.
  • [39] Meyer, R.; Köhler, J.; Homburg, A. Explosives. 6th ed., John Wiley & Sons, 2008; ISBN 9783527617043.
  • [40] Sinditskii, V.; Filatov, S.; Kolesov, V.; Kapranov, K.; Asachenko, A.; Nechaev, M.; Lunin, V.; Shishov, N. Combustion Behavior and Physico-chemical Properties of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate (TKX-50). Thermochim. Acta 2015, 614: 85-92.
  • [41] Linstrom, P. J.; Mallard, W. NIST Chemistry Webbook; NIST Standard Reference Database No. 69. 2001; http://webbook. nist. gov.
  • [42] Zeman, S.; Krupka, M. New Aspects of Impact Reactivity of Polynitro Compounds. Part III. Impact Sensitivity as a Function of the Intermolecular Interactions. Propellants Explos. Pyrotech. 2003, 28(6): 301-307.
  • [43] Keshavarz, M. H. New Method for Calculating Densities of Nitroaromatic Explosive Compounds. J. Hazard. Mater. 2007, 145(1): 263-269.
  • [44] Hobbs, M.; Baer, M. Calibrating the BKW-EOS with a Large Product Species Data Base and Measured CJ Properties. Proc. 10th Symp.(Int.) Detonation, ONR 1993, 409.
  • [45] Fedoroff, B. T.; Sheffield, O. E.; Clift, G. D.; Reese, E. F. Encyclopedia of Explosives and Related Items. DTIC Document, Vol. 2, 1962.
  • [46] Fedoroff, B.; Sheffield, O.; Clift, G. D.; Reese, E. F. Encylopedia of Explosives and Related Items. PATR 2700, US Dept of the Army Picatinny Arsenal United States of America, Vol. 4, 1969.
  • [47] Rice, B. M.; Hare, J. J. A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules. J. Phys. Chem. A 2002, 106(9): 1770-1783.
  • [48] Storm, C.; Stine, J.; Kramer, J. Sensitivity Relationships in Energetic Materials. In: Chemistry and Physics of Energetic Materials. Springer, 1990, pp. 605-639; ISBN: 9789401074131.
  • [49] Zeman, S.; Koci, J. Electric Spark Sensitivity of Polynitro Compounds: Part IV. A Relation to Thermal Decomposition Parameters. Chin. J. Energ. Mater. 2000, 8(1): 18-26.
  • [50] Mader, C. L. Numerical Modeling of Explosives and Propellants. 3rd ed., CRC Press, Florida 2007; ISBN 9781420052381.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94faa2fb-e29e-45dc-89ab-ed0a813582cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.