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Abstract: Five novel high-nitrogen content (N>50%) derivatives of tetrazole 
are introduced in the study reported here.  The assessment of various properties 
of these compounds were performed, which include physicothermal properties 
(crystal density, condensed phase heat of formation, melting point, enthalpy of 
fusion and entropy of fusion), detonation performance (velocity and pressure of 
detonation, detonation temperature and power), sensitivity with respect to external 
stimuli (impact, shock, friction and electric spark) and combustion performance 
(specific impulse).  The predicted results of these compounds are compared with 
dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50) and octanitro-
1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) as a high performance ionic salt and 
a neutral explosive, respectively.  The novel energetic compounds were found to 
have higher detonation and combustion performance than either TKX-50 or HMX.  
The new explosives are therefore good candidates to obtain high detonation and 
combustion performance in plastic bonded explosives (PBXs) and composite solid 
propellants, respectively. 
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1 Introduction 

Nitrogen-rich energetic compounds are important for the explosives industries 
and users in recent years because they have suitable safety [1], detonation and 
combustion performances [2], oxygen balances [3], thermochemical properties 
[4] and high nitrogen content [5].  But the synthesis of these compounds is 
very costly and time-consuming [6, 7].  Thus, it is important to introduce new 
candidates and perform assessments of various important properties before their 
synthesis.  Tetrazole energetic derivatives are one of the important categories 
of nitrogen-rich compounds because they have high detonation/combustion 
performance [4, 8, 9], are high-energy density compounds (HEDMs) and have 
high positive heats of formation (HOFs) [10-12].  The properties of some 
tetrazoles and tetrazolate ions have been predicted using suitable methods recently 
[13, 14].  The properties of some tetrazole compounds with two identical tetrazole 
rings have also been studied using the EXPLO5 code [15, 16].  Tetrazole salts 
such as hydroxyl ammonium 2-dinitromethyl-5-nitrotetrazolate (HADNMNT) 
and dihydroxyl ammonium 5,5’-bistetrazole-1,1’-diolate (HATO) can be used 
as energetic ingredients for rocket propulsion [17].  Dihydroxyl ammonium 
5,5’-bistetrazolate-1,1’-diolate (TKX-50) is one of the famous bistetrazolate ions 
that can be synthesized using glyoxime [18], 5,5’-bistetrazole-1,1’-diole isolated, 
oxidation of 5,5’-bistetrazole and via cyclization of diazidoglyoxime [19]. 

The purpose of this study was to introduce several neutral tetrazole HEDMs 
with high detonation/combustion performance, i.e. the compounds 1 to 5 shown 
in Figure 1.  New and reliable methods are used to predict their detonation and 
combustion performance as well as their thermodynamic and other physical 
properties.  The sensitivities of these compounds with respect to different 
types of stimulus were also evaluated, i.e. impact, shock, friction and spark 
sensitivity.  The crystalline densities of compounds 1 to 5 were computed quantum 
mechanically.  To confirm the reliability of the methods used, a comparison of 
the predicted properties was made with TKX-50 and octanitro-1,3,5,7-tetranitro-
1,3,5,7-tetrazocine (HMX), a high performance ionic salt and a neutral energetic 
compound, respectively. 
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Figure 1. Molecular structures of new tetrazole derivatives as well as TKX-50 

and HMX 

2 Results and Discussion 

2.1 Crystal density 
Crystal density is an important parameter for the assessment of the detonation 
performance of a desired energetic compound.  For the computation of the 
crystalline densities of compounds 1 to 5, the quantum mechanical method of 
Rice and co-workers [20] (whose basis is the B3LYP/6-31G(d,p) level of theory 
implemented using Gaussian-09 software package [20, 21]) was used:

ρ = α1(M/VM) + β1(νσ2
tot) + γ1 (1)

where: ρ, M, VM, ν and σ2
tot are the crystal density of the energetic compound in 

g/cm3, the molecular mass in g/molecule, the molecular volume in cm3/molecule, 
the electrostatic balance parameter and the total variance of the electrostatic 
potential on the 0.001 a.u. molecular surface, respectively.  The parameters α1, 
β1, and γ1 are coefficients (details of their computations are given elsewhere [20]).  
As may be seen in Table 5, replacement of the ( NN

O- ) group by ( NN ) 
between two cycles as well as its introduction into the tetrazole cycle can increase 
the crystal density of energetic compounds. 

2.2 Condensed phase heat of formation 
The condensed phase heat of formation (HOF) is a measure of the heat releasing 
capacity of an energetic compound, and can be predicted on the basis of the 
following correlation for high-N materials with the empirical formula of 
CaHbNcOd using:

ΔfHθ(c) = 39.24a – 40.01b + 83.63c − 49.61d + 115.5(ΣIF) – 177.4(ΣDF) (2)

where ΔfHθ(c) is the condensed phase HOF in kJ/mol; DF and IF are decreasing 
and increasing structural parameters, respectively [22].  The value of ΔfHθ(c) for 
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compound 1 is larger than the values of the other compounds because it has the 
least contribution of negative coefficients. 

2.3 Melting point 
A suitable correlation for the prediction of the melting points of nitramines is 
given as follows:

Tm = 220.47 + 30.220c + 24.780d – 68.691CSFG – 25.891nN-NO2 (3)

where Tm is the melting point in K; CSFG is the contribution of specific functional 
groups, nN–NO2 the number of nitramine groups in the energetic compound [23].  
Compound 5 has the highest melting point, which may be due to its high oxygen 
content. 

2.4 Enthalpy of fusion 
The enthalpy of fusion can be calculated for any energetic compounds with 
general formula CaHbNc(O or S)d(halogen)e using:

ΔHfus = 0.542a + 1.490b + 2.044c + 1.252d + 1.839e + 9.848ΔHInc,fus − 675ΔHDec,fus

 (4)

where ΔHfus is the enthalpy of fusion in kJ/mol; the values of ΔHInc,fus and ΔHDec,fus 
are two correcting parameters [24].  As for the melting point, compound 5 has 
the highest value of ΔHfus compared to the other new compounds.

2.5 Entropy of fusion 
The entropy of fusion is an important property for the prediction of the solubility 
and melting points of organic compounds [25].  It can be estimated using:

ΔfusS = 39.99 + 5.88c + 1.22d – 23.86ΔfusSnon-add (5) 

where ΔfusS is the entropy of fusion in J/K·mol and ΔfusSnon-add is a non-additive 
correcting function [26].  The predicted entropies of fusion for compounds 1 
to 5 are given in Table 1, which are consistent with the predicted results for Tm 
and ΔHfus. 
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2.6	 Specific	impulse	
The specific impulse can be used for the assessment of the combustion 
performance of the new compounds as monopropellants added to composite 
propellants to attain higher combustion performance, which can be predicted 
[27] by:

Isp = 2.425 – 0.074a – 0.0036b + 0.0237c + 0.04d – 0.1001nNHx − 0.1466(nAr–1)
 (6)

where Isp is in N·s·g−1; nNHx and nAr are the number of −NH2 or −NH groups and 
aromatic rings respectively [27].  A low value of a and the absence of hydrogen 
atoms and –NHx groups can increase Isp.  Among these compounds, compounds 
1, 2 and 3 are desirable due to high values of Isp. 

2.7 Detonation velocity and pressure 
Detonation velocity and pressure are two important detonation performance 
parameters which can be predicted [28, 29] using: 

D = 1.453 Isp ρ0 + 1.98 (7)
P = 44.4 Isp ρ0

2 – 21 (8)

where D is the detonation velocity in km/s; P is the detonation pressure in kbar 
and ρ0 is the loading density in g·cm−1.  All of the new compounds have higher 
detonation performance than TKX-50 and HMX.

 
2.8 Detonation temperature 
A suitable correlation has recently been introduced to estimate the detonation 
temperature of different classes of high explosives as follows:

Tdet = 5136 − 190.1a − 56.4b + 115.9c + 148.4d − 466.0(d/a) − 
         700.8(b/d) − 282.9nNHx (9)

where Tdet is detonation temperature in K [30].  The values of Tdet for the new 
compounds are higher than TKX-50 and HMX because there is no hydrogen to 
form water and also a good oxygen balance. 

2.9 Assessment of power by ballistic mortar and Trauzl lead block 
Two correlations were used to assess the power of the energetic compounds 
relative to 2,4,6-trinitrotoluene (TNT) using the ballistic mortar and Trauzl lead 
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block tests as follows: 

EPBM(%TNT) = 113 − 5.16CEC − 46.18OCF (10)
EPTrauzl(%TNT) = 373.2 – 6525(a/Mw) – 5059(c/Mw) + 21.74(ΔfHθ(c)/Mw) (11)

where EPBM(%TNT) and EPTrauzl(%TNT) are the explosive powers measured using the 
ballistic mortar and Trauzl lead block tests, respectively; Mw is the molecular 
weight of the desired energetic compound; OCF is the correcting function and 
CEC is equal a − 0.54c − 0.70d [31, 32].  The predicted powers for all the new 
compounds are higher than for TKX-50 and HMX. 

2.10 Impact sensitivity 
A new correlation has been developed for the prediction of the impact sensitivity 
of a wide range of different classes of energetic compounds as follows:

logH50 = – 0.584 + 61.62a/Mw + 21.53b/Mw + 27.96c/Mw + 
                 84.47F+/Mw – 147.1F−/Mw (12)

where H50 is the impact sensitivity in cm for a drop weight of 2.5 kg, and F− and F+ 
are two correcting parameters [33].  The predicted results show a high sensitivity 
for the new compounds.  Thus, coating these compounds with appropriate 
polymers (e.g. by hydroxyl-terminated polybutadiene (HTPB) in plastic bonded 
explosives (PBXs) and composite solid propellants) provides a suitable pathway 
for decreasing the sensitivity of these compounds with respect to impact stimulus. 

2.11 Shock sensitivity 98% 
It is possible to calculate the shock sensitivity of the new compounds using 
a standard small-scale gap test as follows:

P98%TMD = 25.449 + 2.2106(a+b/2−d) − 4.1620E0
NNO2 + 

                46.392(1.93nNH2 − nNO2)pure (13)

where P98%TMD is the pressure in kbar that is required to initiate material pressed 
to 98% of the theoretical maximum density (TMD); nNH2 and nNO2 are the number 
of amino and nitro groups, respectively; E0

NNO2 equals 1.0 for nitramine or α-C-H 
linkage in nitroaromatic compounds [34].  Since the shock sensitivities of the 
new compounds are less than HMX, the coating of these compounds by suitable 
polymers can improve the safety of these compounds. 
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2.12 Friction sensitivity 
Due to the presence of nitramine groups in these compounds, the assessment 
of the friction sensitivity of these compounds should be considered using the 
following relation:

FS = 600.8 – 2428.6(b/Mw) − 6481.4(c/Mw) − 9560.9(d/Mw) + 
         54.5PFS

+ −77.8PFS
− (14)

where FS is the friction sensitivity in N; PFS
+ and PFS

− are two correcting functions 
for the friction sensitivity [35].  The same as impact and shock sensitivities, 
friction sensitivities of the new compounds are less than both HMX and TKX-50.  
Thus, the coating of these compounds by suitable polymers such as HTPB can 
increase safety of these compounds.

2.13 Spark sensitivity 
For the prediction of the spark sensitivity of compounds 1 to 5 with respect to 
electric spark stimuli, the following correlation can be used: 

EES = 3.460 + 6.504(a/d) – 4.059CCH2NNO2>3,C(=O)(O or NH) (15)

where EES is the spark sensitivity in J; CCH2NNO2>3,C(=O)(O or NH) indicates the existence 
of methylene nitramine groups (the number being greater than or equal to 3) 
in cyclic nitramines or the presence of COO or CONH functional groups [36].  
Fortunately, the predicted EES of the new compounds are greater than HMX.  
Thus, the electric spark sensitivity of these compounds is lower than HMX. 

3 Conclusion 

The properties of several new tetrazole derivatives were evaluated and compared 
with TKX-50 (a high performance ionic salt) and HMX (a neutral energetic 
compound).  Since these tetrazole compounds have high densities and condensed 
phase heats of formation, their detonation performance is higher than TKX-50 
and HMX.  Moreover, high positive values for the condensed phase heats of 
formation as well as good oxygen balance give the tetrazoles higher values of 
specific impulse than TKX-50 and HMX.  Therefore, these compounds are good 
candidates for use as oxidizers in composite solid propellant formulations.  The 
calculated values of the impact, shock and friction sensitivities of the tetrazoles 
investigated are lower than the corresponding values for HMX.  Thus, they are 
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more sensitive with respect to the external mechanical stimuli impact, shock and 
friction.  For their applications as high explosives and oxidizers in composite 
propellants, higher safety is required.  Coating of these compounds with polymers 
such as is done for HMX in PBX-9501 and PBX-9011 [37] should reduce their 
sensitivities because PBXs were originally developed to reduce the sensitivity 
of newly-synthesized explosive crystals by embedding them in a rubber-like 
polymeric matrix [38].  Thus, coating of these explosives with suitable polymers 
such as HTPB should improve the safety of these compounds in composite solid 
propellants or PBXs. 
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