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Abstract: Five novel high-nitrogen content (N>50%) derivatives of tetrazole
are introduced in the study reported here. The assessment of various properties
of these compounds were performed, which include physicothermal properties
(crystal density, condensed phase heat of formation, melting point, enthalpy of
fusion and entropy of fusion), detonation performance (velocity and pressure of
detonation, detonation temperature and power), sensitivity with respect to external
stimuli (impact, shock, friction and electric spark) and combustion performance
(specific impulse). The predicted results of these compounds are compared with
dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50) and octanitro-
1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) as a high performance ionic salt and
a neutral explosive, respectively. The novel energetic compounds were found to
have higher detonation and combustion performance than either TKX-50 or HMX.
The new explosives are therefore good candidates to obtain high detonation and
combustion performance in plastic bonded explosives (PBXs) and composite solid
propellants, respectively.
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1 Introduction

Nitrogen-rich energetic compounds are important for the explosives industries
and users in recent years because they have suitable safety [1], detonation and
combustion performances [2], oxygen balances [3], thermochemical properties
[4] and high nitrogen content [5]. But the synthesis of these compounds is
very costly and time-consuming [6, 7]. Thus, it is important to introduce new
candidates and perform assessments of various important properties before their
synthesis. Tetrazole energetic derivatives are one of the important categories
of nitrogen-rich compounds because they have high detonation/combustion
performance [4, 8, 9], are high-energy density compounds (HEDMs) and have
high positive heats of formation (HOFs) [10-12]. The properties of some
tetrazoles and tetrazolate ions have been predicted using suitable methods recently
[13, 14]. The properties of some tetrazole compounds with two identical tetrazole
rings have also been studied using the EXPLOS5 code [15, 16]. Tetrazole salts
such as hydroxyl ammonium 2-dinitromethyl-5-nitrotetrazolate (HADNMNT)
and dihydroxyl ammonium 5,5’-bistetrazole-1,1’-diolate (HATO) can be used
as energetic ingredients for rocket propulsion [17]. Dihydroxyl ammonium
5,5 -bistetrazolate-1,1’-diolate (TKX-50) is one of the famous bistetrazolate ions
that can be synthesized using glyoxime [18], 5,5’-bistetrazole-1,1’-diole isolated,
oxidation of 5,5’-bistetrazole and via cyclization of diazidoglyoxime [19].

The purpose of this study was to introduce several neutral tetrazole HEDMs
with high detonation/combustion performance, i.e. the compounds 1 to 5 shown
in Figure 1. New and reliable methods are used to predict their detonation and
combustion performance as well as their thermodynamic and other physical
properties. The sensitivities of these compounds with respect to different
types of stimulus were also evaluated, i.e. impact, shock, friction and spark
sensitivity. The crystalline densities of compounds 1 to 5 were computed quantum
mechanically. To confirm the reliability of the methods used, a comparison of
the predicted properties was made with TKX-50 and octanitro-1,3,5,7-tetranitro-
1,3,5,7-tetrazocine (HMX), a high performance ionic salt and a neutral energetic
compound, respectively.

/ Ny e o N N, R . o o l )
Y a T A e T S A
S A A A O,N/NYN\/ \ {
i J J S o ! NS

Copyright © 2018 Institute of Industrial Organic Chemistry, Poland



366 M.H. Keshavarz, Y.H. Abadi, K. Esmacilpour, S. Damiri, M. Oftadeh

\/N?N\ /1 N N/o i No,
A e e
o NN N\
‘\]7 (NH;0H"), ,O/ ,Loz
5 TKX-50 HMX
Figure 1. Molecular structures of new tetrazole derivatives as well as TKX-50
and HMX

2 Results and Discussion

2.1 Crystal density

Crystal density is an important parameter for the assessment of the detonation
performance of a desired energetic compound. For the computation of the
crystalline densities of compounds 1 to 5, the quantum mechanical method of
Rice and co-workers [20] (whose basis is the B3LYP/6-31G(d,p) level of theory
implemented using Gaussian-09 software package [20, 21]) was used:

p = (M/Vy) + Bi(ve*e) + 11 (1)

where: p, M, Vi, v and 6%, are the crystal density of the energetic compound in
g/cm?, the molecular mass in g/molecule, the molecular volume in cm*/molecule,
the electrostatic balance parameter and the total variance of the electrostatic
potential on the 0.001 a.u. molecular surface, respectively. The parameters o,
B1, and v, are coefficients (details of their computations are given elsewhere [20]).
As may be seen in Table 5, replacement of the (_— [ ) group by (—n==n—)
between two cycles as well as its introduction into the tetrazole cycle can increase
the crystal density of energetic compounds.

2.2 Condensed phase heat of formation

The condensed phase heat of formation (HOF) is a measure of the heat releasing
capacity of an energetic compound, and can be predicted on the basis of the
following correlation for high-N materials with the empirical formula of
C.H,N.O, using:

AH(c) = 39.24a — 40.01b + 83.63¢ — 49.61d + 115.5(XIF) — 177.4(EDF) (2)

where A/%(c) is the condensed phase HOF in kJ/mol; DF and IF are decreasing
and increasing structural parameters, respectively [22]. The value of A/#(c) for
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compound 1 is larger than the values of the other compounds because it has the
least contribution of negative coefficients.

2.3 Melting point
A suitable correlation for the prediction of the melting points of nitramines is
given as follows:

T:,=1220.47 + 30.220c + 24.780d — 68.691 Cspg— 25.89 1nnn02 3)

where T, is the melting point in K; Csgg is the contribution of specific functional
groups, nn-noz2 the number of nitramine groups in the energetic compound [23].
Compound 5 has the highest melting point, which may be due to its high oxygen
content.

2.4 Enthalpy of fusion
The enthalpy of fusion can be calculated for any energetic compounds with
general formula C,H,N.(O or S),(halogen). using:

AH;=0.542a + 1.490b +2.044c +1.252d + 1.839€ + 9.848 A Hieus — 675A Hpee fus
(4)

where AHj,s1s the enthalpy of fusion in kJ/mol; the values of AHne,us and AHpec,fus
are two correcting parameters [24]. As for the melting point, compound 5 has
the highest value of AHy,s compared to the other new compounds.

2.5 Entropy of fusion
The entropy of fusion is an important property for the prediction of the solubility
and melting points of organic compounds [25]. It can be estimated using:

ApsS =39.99 + 5.88¢ + 1.22d — 23.86AssSnon-add (5)
where AgsS is the entropy of fusion in J/K-mol and AgsShon-ada 1S @ non-additive
correcting function [26]. The predicted entropies of fusion for compounds 1

to 5 are given in Table 1, which are consistent with the predicted results for 7.,
and AHjs.
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2.6 Specific impulse

The specific impulse can be used for the assessment of the combustion
performance of the new compounds as monopropellants added to composite
propellants to attain higher combustion performance, which can be predicted
[27] by:

1,=2.425-0.074a — 0.0036b + 0.0237c + 0.04d — 0.100 1 inux — 0.1466(714—1)
(6)

where g, is in N-s-g!; nyux and n4, are the number of -NH, or —NH groups and
aromatic rings respectively [27]. A low value of a and the absence of hydrogen
atoms and —NH, groups can increase /;,. Among these compounds, compounds
1, 2 and 3 are desirable due to high values of /.

2.7 Detonation velocity and pressure
Detonation velocity and pressure are two important detonation performance
parameters which can be predicted [28, 29] using:

D=1.4531,po+ 1.98 (7)
P=4441,po 21 (8)

where D is the detonation velocity in km/s; P is the detonation pressure in kbar
and p, is the loading density in g-cm™'. All of the new compounds have higher
detonation performance than TKX-50 and HMX.

2.8 Detonation temperature
A suitable correlation has recently been introduced to estimate the detonation
temperature of different classes of high explosives as follows:

Tya= 5136 — 190.1a — 56.4b + 115.9¢ + 148.4d — 466.0(d/a) —
700.8(b/d) — 282. 91, (9)

where Ty is detonation temperature in K [30]. The values of Ty for the new
compounds are higher than TKX-50 and HMX because there is no hydrogen to
form water and also a good oxygen balance.

2.9 Assessment of power by ballistic mortar and Trauzl lead block
Two correlations were used to assess the power of the energetic compounds
relative to 2,4,6-trinitrotoluene (TNT) using the ballistic mortar and Trauzl lead
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block tests as follows:

EPBM(%TNT): 113 - 5.16CEC — 46.180CF (10)
EPrencirnn = 373.2 — 6525(alMw) — 5059(c/Mw) + 21.74(AH(c)/Mw)  (11)

where EPgyesrnt) and EPruse.rnt are the explosive powers measured using the
ballistic mortar and Trauzl lead block tests, respectively; Mw is the molecular
weight of the desired energetic compound; OCF is the correcting function and
CEC is equal a — 0.54¢ — 0.70d [31, 32]. The predicted powers for all the new
compounds are higher than for TKX-50 and HMX.

2.10 Impact sensitivity
A new correlation has been developed for the prediction of the impact sensitivity
of a wide range of different classes of energetic compounds as follows:

logHso=— 0.584 + 61.62a/Mw + 21.53b/Mw + 27.96¢/Mw +
84.47F" /Mw — 147.1F/Mw (12)

where Hsis the impact sensitivity in cm for a drop weight of 2.5 kg, and £~ and F*
are two correcting parameters [33]. The predicted results show a high sensitivity
for the new compounds. Thus, coating these compounds with appropriate
polymers (e.g. by hydroxyl-terminated polybutadiene (HTPB) in plastic bonded
explosives (PBXs) and composite solid propellants) provides a suitable pathway
for decreasing the sensitivity of these compounds with respect to impact stimulus.

2.11  Shock sensitivity 98%
It is possible to calculate the shock sensitivity of the new compounds using
a standard small-scale gap test as follows:

Posyrmp = 25.449 + 2.2106(a+b/2—d) — 4.1620E o2 +
46392(193I’ZNH2 - nNoz)pure (13)

where Pogo,rmp 1S the pressure in kbar that is required to initiate material pressed
to 98% of the theoretical maximum density (TMD); nnm and nno; are the number
of amino and nitro groups, respectively; E°no2 equals 1.0 for nitramine or o-C-H
linkage in nitroaromatic compounds [34]. Since the shock sensitivities of the
new compounds are less than HMX, the coating of these compounds by suitable
polymers can improve the safety of these compounds.

Copyright © 2018 Institute of Industrial Organic Chemistry, Poland
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2.12  Friction sensitivity

Due to the presence of nitramine groups in these compounds, the assessment
of the friction sensitivity of these compounds should be considered using the
following relation:

FS = 600.8 — 2428.6(b/Mw) — 6481.4(c/Mw) — 9560.9(d/Mw) +
54.5Prs" —77.8Prs (14)

where FSis the friction sensitivity in N; Prs™ and Prs~ are two correcting functions
for the friction sensitivity [35]. The same as impact and shock sensitivities,
friction sensitivities of the new compounds are less than both HM X and TKX-50.
Thus, the coating of these compounds by suitable polymers such as HTPB can
increase safety of these compounds.

2.13  Spark sensitivity
For the prediction of the spark sensitivity of compounds 1 to 5 with respect to
electric spark stimuli, the following correlation can be used:

EES =3.460 + 6504(0/61)* 4-059CCH2NN02>3,C(:O)(O or NH) (15)

where Egsis the spark sensitivity in J; Cerannozs3.c-oy0ornm indicates the existence
of methylene nitramine groups (the number being greater than or equal to 3)
in cyclic nitramines or the presence of COO or CONH functional groups [36].
Fortunately, the predicted Egs of the new compounds are greater than HMX.
Thus, the electric spark sensitivity of these compounds is lower than HMX.

3 Conclusion

The properties of several new tetrazole derivatives were evaluated and compared
with TKX-50 (a high performance ionic salt) and HMX (a neutral energetic
compound). Since these tetrazole compounds have high densities and condensed
phase heats of formation, their detonation performance is higher than TKX-50
and HMX. Moreover, high positive values for the condensed phase heats of
formation as well as good oxygen balance give the tetrazoles higher values of
specific impulse than TKX-50 and HMX. Therefore, these compounds are good
candidates for use as oxidizers in composite solid propellant formulations. The
calculated values of the impact, shock and friction sensitivities of the tetrazoles
investigated are lower than the corresponding values for HMX. Thus, they are
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more sensitive with respect to the external mechanical stimuli impact, shock and
friction. For their applications as high explosives and oxidizers in composite
propellants, higher safety is required. Coating of these compounds with polymers
such as is done for HMX in PBX-9501 and PBX-9011 [37] should reduce their
sensitivities because PBXs were originally developed to reduce the sensitivity
of newly-synthesized explosive crystals by embedding them in a rubber-like
polymeric matrix [38]. Thus, coating of these explosives with suitable polymers
such as HTPB should improve the safety of these compounds in composite solid
propellants or PBXs.
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