PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Supported by 2D and 3D Imaging Methods Investigation of the Influence of Fiber Orientation on the Mechanical Properties of the Composites Reinforced with Fibers in a Polymer Matrix

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to examine the behavior of the carbon fiber reinforced polymer (CFRP) composites depending on the fiber orientation and to understand the influence of microstructural discontinuities on mechanical properties. For the tests 210 gsm prepreg composite and 200 gsm carbon fabric with polymer matrix have been used. Samples were structured and later examined according to the ASTM-D3039 and ASTM-D3878 (equivalents are ISO 20975, ISO 527-4 and ISO 527-5). Accordingly, to the number of layers, three ways of the fibers arranging in relation to the applied force were used. Mechanical properties were determined in a static tensile test. The results of imaging studies, which included analyzes of Digital Image Correlation, Computed Tomography and Scanning Electron Microscopy, showed structural discontinuities, specific stress distribution and propagation of stresses depending on the production technology, which were correlated with the obtained strength results. The source of the gradual development of the degradation of the composite structure was observed in local microdamages and microcracks. As a result of a sub-critical crack growth within the resin matrix material, the defects are subject to a complex, multi-axial stress field on the micro-scale, even if the globally applied force is axial. Samples in which the load was applied along the axis of the fibers behave like an elastic material, while samples, where the force is applied at an angle to the axis of the fibers, tend to behave like an elastic-plastic material.
Twórcy
  • Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warsaw, Poland
  • Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warsaw, Poland
  • Faculty of Mechatronics, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warsaw, Poland
  • Faculty of Power and Aeronautical Engineering, Warsaw University of Technology Pl. Politechniki 1, 00-665 Warsaw, Poland
autor
  • Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warsaw, Poland
Bibliografia
  • 1.Kumaresan M., Sathish S., Karthi N.; Effect of fiber orientation on mechanical properties of sisal fiber reinforced epoxy composites. Journal of Applied Science and Engineering, 2015, 18(3): 289-294. https://doi.org/10.6180/jase.2015.18.3.09
  • 2. Rajak D.K., D.D. Pagar, P.L. Menezes, E. Linul; Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667; https://doi.org/10.3390/polym11101667
  • 3. Mogilski M., M.Jabłoński, M. Deroszewska, R. Saraczyn, J. Tracz, M. Kowalik and W. Rzadkowski; Investigation of energy absorbed by composite panels with honeycomb aluminum alloy core. Materials 2020, 13, 5807; https://doi.org/10.3390/ ma13245807
  • 4. Faulstich de Paiva J.M., S. Mayer, M.C. Rezende; Comparison of tensile strength of different carbon fabric reinforced epoxy composites; Mat. Res. 9(1), 2006; https://doi.org/10.1590/ S1516-14392006000100016
  • 5. Dziedzic A. Percolation theory and its application in materials science and microelectronics (Part II – Experiments and numerical simulations). Informacije Midem - Ljubljana, 31(2): 141-152
  • 6. Tezara C., J.P. Siregar, H.Y. Lim, F.A. Fauzi, M.H. Yazdi, L.K. Moey, J.W. Lim; Factors that affect the mechanical properties of kenaf fiber reinforced polymer: A review; Journal of Mechanical Engineering and Sciences, 2016, 10(2): 2159-2175. https://doi. org/10.15282/jmes.10.2.2016.19.0203
  • 7. Kaczmar J., Mayer P., Właściwości i zastosowania włókien węglowych i szklanych. Tworzywa Sztuczne i Chemia, 2008, 6: 52-56.
  • 8. Taj S., M.A. Munawar, S. Khan, Natural fiber-reinforced polymer composites, Proc. Pakistan Acad. Sci. 2007, 44(2):129-144.
  • 9. Al-Mosawe A., R. Al-Mahaidi, Xiao-Ling Zhao, Effect of CFRP properties, on the bond characteris- tics between steel and CFRP laminate under quasistatic loading, Construction and Building Materials, 98, November 2015: 489-501
  • 10. Mulaan N.A., A.S. Mahmood, S. Basturk; The effect of different number of layers and fiber distribution on the performance of composite laminates; Journal of Physics: Conference Series 1973 (2021) 012067; https://doi.org/10.1088/1742-6596/1973/1/012067
  • 11. Chukov D., Nematulloev S., Zadorozhnyy M., Tcherdyntsev V., Stepashkin A., Zherebtsov D.; Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites; Polymers 2019, 11, 684; https://doi.org/10.3390/polym11040684
  • 12. Giorgini L., L. Mazzocchetti, G. Minak, E. Dolcini; investigation of a carbon fiber/epoxy prepreg curing behavior for thick composite materials production: an industrial case-study. 6th International Conference on Times of Polymers (TOP) and Composites AIP Conf. Proc. 2012, 1459: 190-192. https://doi. org/10.1063/1.4738439
  • 13. Sharma A.P., S.H. Khan, R. Velmurugan; Effect of through thickness separation of fiber orientation on low velocity impact response of thin composite lami- nates; Article in Heliyon, November 2019; https://doi. org/10.1016/j.heliyon.2019.e02706
  • 14. Kakur N., S. Krishnapillai, V. Ramachandran; Effect of fiber orientation on carbon/epoxy and glass/ epoxy composites subjected to shear and bending. Diffusion and Defect Data Pt. B: Solid State Phenomena 267: 103-108; https://doi.org/10.4028/ www.scientific.net/SSP.267.103
  • 15. Vasudevan A., S. Senthil Kumaran, K. Naresh, R. Velmurugan, K. Shankar; Advanced 3D and 2D damage assessment of low velocity impact response of glass and Kevlar fiber reinforced epoxy hybrid composites; https://doi.org/10.1080/237406 8X.2018.1465310
  • 16. Valot E., P. Vannucci. Some exact solutions for fully orthotropic laminates. Composite Structures, 69(2), July 2005: 157-166; https://doi.org/10.1016/j. compstruct.2004.06.007
  • 17. Boczkowska A., G. Krzesiński; Kompozyty i techniki ich wytwarzania; Oficyna Wydawnicza Politechniki Warszawskiej, Pages: 58-61 and 192-197
  • 18. Do Sy; Material and Application Report 2015 Acrylonitrile Butadiene Styrene (ABS) and 3D Printer (2); https://www.researchgate.net/publication/332538226_Material_and_Application_Re- port_2015_Acrylonitrile_Butadiene_Styrene_ ABS_and_3D_Printer_2 (Accessed on 3.09.2022)
  • 19. Velgosová O., S. Nagy, M. Besterci, V. Puchý; Microstructure and fracture mechanism of Cu-Y2O3 composite; Kovove Mater. 58 2020 363-369; https:// doi.org/10.4149/km_2020_5_363
  • 20. Korniejenko K., B. Figiela, C. Ziejewska, J. Marczyk, P. Bazan, M. Hebda, M. Choińska and Wei- Ting Lin; Fracture behavior of long fiber reinforced geopolymer composites at different operating temperatures. Materials, 15(2); https://doi.org/10.3390/ ma15020482
  • 21. https://www.astm.org/d3878-20b.html
  • 22. https://www.astm.org/d3039_d3039m-08.html
  • 23. XC110 210g 2x2 Twill 3k prepreg carbon fibre manufactured by Easy Composites Ltd, Stoke-on- Trent, UK. 2020. Available online: https://www. easycomposites.co.uk/xc110-210g-22-twill-3k- prepreg-carbon-fibre (accessed on 2.08.2022)
  • 24. Ahmad F., M. Al Awadh , M. Abas , S. Noor and A. Hameed; Optimization of carbon fiber reinforced plastic curing parameters for aerospace application. Applied Sciences 2022, 12, 4307, https://doi. org/10.3390/app12094307
  • 25. Instron 8516 Fatigue Testing Machine Manufactured by Instron Worldwide, Norwood, MA, USA. Available online: https://www.instron.us/products/ testing-systems/dynamic-and-fatigue-systems (accessed on 02.03.2022)
  • 26. Sherif G., Chukov D., Tcherdyntsev V., Torokhov V.; Effect of formation route on the mechanical properties of the polyethersulfone composites reinforced with glass fibers; Polymers 2019, 11, 1364; doi:10.3390/polym11081364
  • 27. Bach H. Application of ion sputtering in preparing glasses and their surface layers for electron microscope investigations. Journal of Non-Crystalline Solids, 3, (1), 1970: 1-32; https:// doi.org/10.1016/0022-3093(70)90102-X
  • 28. Das Murtey M. and Ramasamy P. Sample preparations for scanning electron microscopy – life sciences. Modern Electron Microscopy in Physical and Life Sciences, Chapter 8: 161-183
  • 29. Garcea S.C., Y. Wang, P.J. Withers; X-ray computed tomography of polymer composites; Compostes Science and Technology, 2018, 156: 305-319; https://doi.org/10.1016/j.compscitech.2017.10.023
  • 30. Zhishen Wu, Xin Wang, Kentaro Iwashita, Takeshi Sasaki, Yasumasa Hamaguchi; Tensile fatigue behaviour of FRP and hybrid FRP sheets; Composites Part B: Engineering, 2010, 41(5): 396-402; https:// doi.org/10.1016/j.compositesb.2010.02.001
  • 31. Pansart S. Prepreg processing of advanced fibre-reinforced polymer (FRP) composites; Woodhead Publishing Series in Civil and Structural Engineering 2013: 125-154; https://doi. org/10.1533/9780857098641.2.125
  • 32. Stelzer S., R. Jones, A.J. Brunner; Interlaminar fatigue crack growth in carbon fiber reinforced composites; 19th International Conference on Composite Materials (ICCM19); July 2013
  • 33. Savage G. Sub-critical crack growth in highly stressed Formula 1 race car composite suspension components; Engineering Failure Analysis; https:// doi.org/10.1016/j.engfailanal.2008.02.016
  • 34. Fiore V., Valenza A., Epoxy resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites; Woodhead Publishing Series in Civil and Structural Engineering 2013: 88-121; https:// doi.org/10.1533/9780857098641.1.88
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94f6b06e-0a7b-42be-9c64-15f7aec6121a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.