Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the results of research of structural changes that occur during in furan resins with different content of furfuryl alcohol by UV radiation and atmospheric air are presented. The research was carried out by transmission method (KBr pellets), using FTIR spectrometer Excalibur 3000 for the three samples of furan resins with different content of furfuryl alcohol. As a result of UV radiation and oxidizing atmosphere only the sample of the resin Kaltharz 8616 remained liquid. Two others (Kaltharz U 404 and Kaltharz 8117) were cured after 1
Czasopismo
Rocznik
Strony
5--8
Opis fizyczny
Bibliogr. 13 poz., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Kraków, Poland
Bibliografia
- [1] Bobrowski, A. & Grabowska, B. (2012). Impact of temperature on furan resin and binder structure. Metallurgy and Foundry Engineering 38, 73-80.
- [2] Holtzer, M., Żymankowska–Kumon, S., Bobrowski, A., Dańko, R. & Kmita, A. (2014). The influence of reclaim addition on the emission of PAHs and BTEX from moulding sands with furfuryl resin with the average amount of furfuryl alcohol. Archives of Foundry Engineering 14, 37–42.
- [3] Dańko, R. (2012) Investigations of the matrix quality in the circulation process of moulding sands with an organic binder. Archives of Foundry Engineering 12, 21–26.
- [4] Benz, N., Fourberg, C. (2012). Umweltfreundliche Furan-Kaltharze mit einem freien Furfurylalkoholanteil kleiner 25 Prozent. Hüttenes-Albertus Chemische Werke GmbH, 1-11.
- [5] Katalog of resins, Hüttenes-Albertus Polska.
- [6] Renhe, H., Hongmei, G., Yaoji, T., Qingyun, L. Curing mechanizm of furan resin modified with different agents and their thermal strength, Research&Development, 161-165.
- [7] Burket, C.L., Rajagopalan, R., Marencic A.P., Dronvajjala, K. & Foley, H.C. (2006). Genesis of porosity in polyfurfuryl alcohol derived nanoporous carbon, Carbon 44, 2957-2963.
- [8] Rosu, D., Rosu, L. & Brebu, M. (2011). Thermal stability of silver sulfathiazole – epoxy resin network, Journal of Analytical and Applied Pyrolisys 92. 10-18.
- [9] Reghunadhan Nair C.P., Bindu, R.L. & Ninan. K.N. (2001). Thermal characteristics of addition-cure phenolic resins, Polymer Degradation and Stability, 73. 251-257.
- [10] González, R., Figueroa, J.M., & González, H. (2002). Furfuryl alkohol polimerysation by iodine in methylene chloride, European Polymer Journal 38. 287-297.
- [11] Liu, Y., Gao, J. & Zhang, R. (2002). Thermal properties and stability of boron-containing phenol-formaldehyde resin formed from paraformaldehyde, Polymer Degradation and Stability 77. 495-501.
- [12] Costa, L., Roosi di Montelera, L. Comino, G, Weil, E.D. & Pearce, E.M. (1997). Structure-charring relationship in phenol-formaldehyde type resins, Polymer Degradation and Stability 56. 23-35.
- [13] Poljanšek, I. & Krajnc, M. (2005) Characterization of Phenol-Formaldehyde Prepolymer Resins by In Line FT-IR Spectroscopy. Acta Chim. Slov. 52. 238-244.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94f0145e-b840-4f4c-bb69-597ab8b64d29