Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A novel approach is employed to a general solution for one-dimensional steady-state thermal and mechanical stresses in a hollow thick cylinder made of a functionally graded material (FGM). The temperature distribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the cylinder. The material properties, except Poisson’s ratio, are assumed to be exponentially-varying through the thickness. Forcing functions applied to the inner boundary are internal pressures which may be in form of steps. These conditions result in governing differential equations with variable coefficients. Analytical solutions to such equations cannot be obtained except for certain simple grading functions and pressures. Numerical approaches must be adopted to solve the problem in hand. The novelty of the present study lies in the fact that the Complementary Functions Method (CFM) is employed in the analysis. The Complementary Functions method (CFM) will be infused into the analysis to convert the problem into an initial-value problem which can be solved accurately. Benchmark solutions available in the literature are used to validate the results and to observe the convergence of the numerical solutions. The solution procedure is well-structured, simple and efficient and it can be readily applied to cylinders. It is also well suited for problems in which mechanical properties are graded.
Czasopismo
Rocznik
Tom
Strony
343—351
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Adana Science and Technology University, Department of Mechanical Engineering, Adana, Turkey
autor
- Osmaniye Korkut Ata University, Department of Mathematics, Osmaniye, Turkey
autor
- Department of Mechanical Engineering, Ondokuz Mayis University, Samsun, Turkey
Bibliografia
- 1. Agarwal R.P., 1982, On the method of complementary functions for nonlinear boundary-value problems, Journal of Optimization Theory and Applications, 36, 1, 139-144
- 2. Akbari Alashti R., Khorsand M., Tarahhomi M.H., 2013, Three-dimensional asymmetric thermo-elastic analysis of a functionally graded rotating cylindrical shell, Journal of Theoritical and Applied Mechanics, 51, 1, 143-158
- 3. Aktas¸ Z., 1972, Numerical Solutions of Two-Point Boundary Value Problems, Ankara Turkey: METU, Dept. of Computer Engineering
- 4. Boley B.A., Weiner J.H., 1960, Theory of Thermal Stresses, Wiley Hoboken, New Jork, 35-45
- 5. Chapra S.C., Canale R.P., 1998, Numerical Methods for Engineers, 2nd ed., McGraw-Hill, New York, 760-766
- 6. Das Y.C., Navaratna D.R., 1962, Thermal bending of rectangular plates, Journal of the Aerospace Sciences, 29, 11, 1397-1399
- 7. Das Y.C., Rath B.K., 1972, Thermal bending of moderately thick rectangular plates, AIAA Journal, 10, 10, 1349-1351
- 8. Jabbari M., Bahtui A., Eslami M.R., 2009, Axisymmetric mechanical and thermal stresses in thick short length FGM cylinders, International Journal of Pressure Vessels and Piping, 86, 5, 296-306
- 9. Jabbari M., Nejad M.Z., Ghannad M., 2015, Thermo-elastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading, International Journal of of Engineering Science, 96, 1-18
- 10. Jabbari M., Sohrabpour S., Eslami M.R., 2002, Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads, International Journal of Pressure Vessels and Piping, 79, 7, 493-497
- 11. Jabbari M., Sohrabpour S., Eslami M.R., 2003, General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads, ASME Journal of Applied Mechanics, 70, 1, 111-118
- 12. Noda N., Ootao Y., Tanigawa Y., 2012, Transient thermoelastic analysis for functionally graded circular disk with piecewise power law, Journal of Theoretical and Applied Mechanics, 50, 3, 831-839
- 13. Ootao Y., Tanigawa Y., 2006, Transient thermoelastic analysis for functionally graded hollow cylinder, Journal of Thermal Stresses, 29, 11, 1031-1046
- 14. Roberts S.M., Shipman J.S., 1979, Fundamental matrix and two-point boundary-value problems, Journal of Optimization Theory and Applications, 28, 1, 77-78
- 15. Ruhi M., Angoshtari A., Naghdabadi R., 2005, Thermoelastic analysis of thick-walled finite- -length cylinders of functionally graded materials, Journal of Thermal Stresses, 28, 4, 391-408
- 16. Shao Z.S., 2005, Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length, International Journal of Pressure Vessels and Piping, 82, 3, 155-163
- 17. Shao Z.S., Ang K.K., Reddy J.N., Wang T.J., 2008, Nonaxisymmetric thermomechanical analysis of functionally graded hollow cylinders, Journal of Thermal Stresses, 31, 6, 515-536
- 18. Stavsky Y., 1963, Thermoelasticity of heterogeneous aeolotropic plates, Journal of the Engineering Mechanics Division, 89, 2, 89-105
- 19. Thangaratnam R.K., Palaninathan, Ramachandran J., 1988, Thermal stress analysis of laminated composite plates and shells, Computers and Structures, 30, 6, 1403-1411
- 20. Timoshenko S., Woinowsky-Krieger S., 1959, Theory of Plates and Shells, 2nd ed., McGraw- -Hill, New York, 73-132
- 21. Yee K.C., Moon T.J., 2002, Plane thermal stress analysis of an orthotropic cylinder subjected to an arbitrary, transient, axisymmetric tempherature distribution, ASME Journal of Applied Mechanics, 69, 5, 632-640
- 22. Ying J., Wang H.M., 2010, Axisymmetric thermoelastic analysis in a finite hollow cylinder due to nonuniform thermal shock, International Journal of Pressure Vessels and Piping, 87, 12, 714-720
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94f00c17-e0d3-4e54-89f6-044eb571212f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.