PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative SWOT analysis of virtual reality and augmented reality ship passenger evacuation technologies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper was to assess the possibility of using modern technologies, virtual reality (VR) and augmented reality (AR), to study the evacuation of passengers from ships. The evacuation of passengers from ships is usually studied from post-accident reports, laboratory or field experiments, and/or numerical modelling. Nowadays, with the rapid development of computer resources and wearable technology, evacuation can also be studied using VR or AR. The methods used in this paper for such assessments included a literature review (tools like Web of Science, Scopus, and Google Scholar indexing platforms) and comparative strengths, weaknesses, opportunities, threats (SWOT) analysis. The results demonstrated the great potential for the implementation of VR and AR technologies within the shipping industry, similar to how they have already found applications in the research of pedestrian evacuation from buildings or open spaces. Finally, recommendations for their use in ship passenger evacuation are presented.
Rocznik
Strony
99--107
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • University of Rijeka, Faculty of Maritime Studies 2 Studentska St., 51000 Rijeka, Croatia
  • University of Rijeka, Faculty of Maritime Studies 2 Studentska St., 51000 Rijeka, Croatia
  • University of Rijeka, Faculty of Maritime Studies 2 Studentska St., 51000 Rijeka, Croatia
Bibliografia
  • 1. Alamäki, A., Dirin, A. & Suomala, J. (2021) Students’ expectations and social media sharing in adopting augmented reality. International Journal of Information and Learning Technology 38(2), pp. 196–208.
  • 2. All, A., Castellar, E.N.P. & Van Looy, J. (2021) Digital Game-Based Learning effectiveness assessment: Reflections on study design. Computers and Education 167, 104160, doi: 10.1016/j.compedu.2021.104160.
  • 3. Ameen, N., Hosany, S. & Tarhini, A. (2021) Consumer interaction with cutting-edge technologies: Implications for future research. Computers in Human Behavior 120, 106761, doi: 10.1016/j.chb.2021.106761.
  • 4. Bandara, D., Woodward, M., Chin, C. & Jiang, D. (2020) Augmented reality lights for compromised visibility navigation. Journal of Marine Science and Engineering 8(12), 1014, doi: 10.3390/jmse8121014.
  • 5. Bayazit, O., Toz, A.C. & Buber, M. (2020) Spatial distribution analysis of ship accidents in the Canakkale Strait. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie, 62(134), pp. 9–17, doi: 10.17402/414.
  • 6. Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E. & Ivkovic, M. (2011) Augmented reality technologies, systems and applications. Multimedia Tools and Applications 51(1), pp. 341–377, doi: 10.1007/s11042-010- 0660-6.
  • 7. Chard, K., Gaffney, N., Hategan, M., Kowalik, K., Ludäscher, B., McPhillips, T., Nabrzyski, J., Stodden, V., Taylor, I., Thelen, T., Turk, M.J. & Willis, C. (2020) Toward enabling reproducibility for data-intensive research using the whole tale platform. In Advances in Parallel Computing, IOS Press BV, pp. 766–778, doi: 10.3233/ APC200107.
  • 8. Duarte, E., Rebelo, F. & Wogalter, M.S. (2010) Virtual Reality and its potential for evaluating warning compliance. Human Factors and Ergonomics in Manufacturing & Service Industries 20(6), pp. 526–537, doi: 10.1002/hfm.20242.
  • 9. Garbett, J., Hartley, T. & Heesom, D. (2021) A multi-user collaborative BIM-AR system to support design and construction. Automation in Construction 122, 103487, doi: 10.1016/j.autcon.2020.103487.
  • 10. Goldiez, B.F., Ahmad, A.M. & Hancock, P.A. (2007) Effects of augmented reality display settings on human wayfinding performance. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 37(5), pp. 839–845, doi: 10.1109/TSMCC.2007.900665.
  • 11. Grabowski, M. (2015) Research on wearable, immersive augmented reality (WIAR) adoption in maritime navigation. Journal of Navigation 68(3), pp. 453–464. doi: 10.1017/ S0373463314000873.
  • 12. Gračan, D. & Agbaba, R. (2021) Analysis of crisis situations in nautical tourism. Scientific Journal of Maritime Research (Pomorstvo) 35(1), pp. 16–22, doi: 10.31217/P.35.1.2.
  • 13. Haghani, M. (2020a) Empirical methods in pedestrian, crowd and evacuation dynamics: Part I. Experimental methods and emerging topics. Safety Science 129, 104743, doi: 10.1016/j.ssci.2020.104743.
  • 14. Haghani, M. (2020b) Empirical methods in pedestrian, crowd and evacuation dynamics: Part II. Field methods and controversial topics. Safety Science 129, 104760, doi: 10.1016/j.ssci.2020.104760.
  • 15. Jang, H.J., Lee, J.Y., Kwak, J., Lee, D., Park, J.-H., Lee, B. & Noh, Y.Y. (2019) Progress of display performances: AR, VR, QLED, OLED, and TFT. Journal of Information Display 20(1), pp. 1–8. doi: 10.1080/15980316.2019.1572662.
  • 16. Jović, M., Tijan, E., Perić Hadžić, A. & Karanikić, P. (2020) Economic aspects of automation innovations in electronic transportation management systems. Scientific Journal of Maritime Research (Pomorstvo) 34(2), pp. 417–427, doi: 10.31217/p.34.2.22.
  • 17. Kang, N., Sah, Y.J. & Lee, S. (2021) Effects of visual and auditory cues on haptic illusions for active and passive touches in mixed reality. International Journal of Human Computer Studies 150, 102613, doi: 10.1016/j.ijhcs.2021.102613.
  • 18. Keshavarz, B., Murovec, B., Mohanathas, N. & Golding, J.F. (2021) The Visually Induced Motion Sickness Susceptibility Questionnaire (VIMSSQ): Estimating Individual Susceptibility to Motion Sickness-Like Symptoms When Using Visual Devices. Human Factors: The Journal of the Human Factors and Ergonomics Society 1872082110086, doi: 10.1177/00187208211008687.
  • 19. Khan, T., Sohail, A., Qureshi, K.N., Iqbal, S. & Jeon, G. (2021) Multipath transport control protocol for 5G mobile augmented reality networks. International Journal of Communication Systems e4778, doi: 10.1002/dac.4778.
  • 20. Kyriazakos, V. & Moustakas, K. (2016) A User-Perspective View for Mobile AR Systems Using Discrete Depth Segmentation. In Proceedings – 2015 International Conference on Cyberworlds, CW 2015, pp. 69–72. doi: 10.1109/ CW.2015.67.
  • 21. Lovreglio, R. & Kinateder, M. (2020) Augmented reality for pedestrian evacuation research: Promises and limitations. Safety Science 128, 104750, doi: 10.1016/j. ssci.2020.104750.
  • 22. Lozowicka, D. & Kaup, M. (2017) Analysis of the Possibility of Safe Evacuation of Passengers from a Ship Moored in the River-Sea Port Szczecin. Naval Engineers Journal 129(3), pp. 117–124.
  • 23. Lv, Z., Chen, D., Lou, R. & Song, H. (2020) Industrial Security Solution for Virtual Reality. IEEE Internet of Things Journal 8(8), pp. 6273–6281, doi: 10.1109/ jiot.2020.3004469.
  • 24. Łozowicka, D. (2012a) Organization of evacuation from passenger ships – a concept of safety enhancement. Scientific Journals Maritime University of Szczecin, Zeszyty Naukowe Akademia Morska w Szczecinie 32 (104), z. 2, pp. 110–114.
  • 25. Łozowicka, D. (2012b) Using genetic algorithms and genetic programming in solving problems related to safety and evacuation of people from ships and land facilities. Scientific Journals Maritime University of Szczecin, Zeszyty Naukowe Akademia Morska w Szczecinie 29 (101), pp. 130–133.
  • 26. Łozowicka, D. (2019) The Development of Methods For Effective Evacuation From the Ship Using Graph Theory and Optimization. Naval Engineers Journal 131(1), pp. 83– 92.
  • 27. Łozowicka, D. (2021) The design of the arrangement of evacuation routes on a passenger ship using the method of genetic algorithms. PLoS ONE 16(8), e0255993, doi: 10.1371/journal.pone.0255993.
  • 28. Malbos, E., Burgess, G.H. & Lançon, C. (2020) Virtual Reality and Fear of Shark Attack: A Case Study for the Treatment of Squalophobia. Clinical Case Studies 19(5), pp. 339–354, doi: 10.1177/1534650120940014.
  • 29. Martín-Martín, A., Orduna-Malea, E., Thelwall, M. & López-Cózar, E.D. (2018) Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), pp. 1160–1177, doi: 10.1016/j.joi.2018.09.002.
  • 30. Mikulić, A. & Parunov, J. (2019) A review of artificial intelligence applications in ship structures. In Trends in the Analysis and Design of Marine Structures – Proceedings of the 7th International Conference on Marine Structures, MARSTRUCT 2019, pp. 515–523, doi: 10.1201/9780429298875- 59.
  • 31. Milgram, P. & Kishino, F. (1994) A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems E77-D, 12, pp. 1321–1329.
  • 32. Miyagawa, D. & Ichinose, G. (2020) Cellular automaton model with turning behavior in crowd evacuation. Physica A: Statistical Mechanics and its Applications 549, 124376, doi: 10.1016/j.physa.2020.124376.
  • 33. Morélot, S., Garrigou, A., Dedieu, J & N’Kaoua, B. (2021) Virtual reality for fire safety training: Influence of immersion and sense of presence on conceptual and procedural acquisition. Computers & Education 166, 104145, doi: 10.1016/j.compedu.2021.104145.
  • 34. Naylor, M., Morrison, B., Ridout, B. & Campbell, A. (2020) Augmented experiences: Investigating the feasibility of virtual reality as part of a workplace wellbeing intervention. Interacting with Computers 31(5), pp. 507–523, doi: 10.1093/iwc/iwz033.
  • 35. Oniszczuk-Jastrząbek, A. & Czermański, E. (2019) Global trends in maritime cruise fleet development. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 60 (132), pp. 154–160, doi: 10.17402/384.
  • 36. Pettijohn, K.A., Peltier, C., Lukos, J.R., Norris, J.N. & Biggs, A.T. (2020) Virtual and augmented reality in a simulated naval engagement: Preliminary comparisons of simulator sickness and human performance. Applied Ergonomics 89, 103200, doi: 10.1016/j.apergo.2020.103200.
  • 37. Picallo, I., Vidal-Balea, A., Blanco-Novoa, O., LopezIturri, P., Fraga-Lamas, P., Klaina, H., FernándezCaramés, T.M., Azpilicueta, L. & Falcone, F. (2021) Design and Experimental Validation of an Augmented Reality System with Wireless Integration for Context Aware Enhanced Show Experience in Auditoriums. IEEE Access 9, pp. 5466–5484, doi: 10.1109/access.2020. 3048203.
  • 38. Rizzo, A. & Kim, G.J. (2005) A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence: Teleoperators and Virtual Environments 14(2), pp. 119–146, doi: 10.1162/1054746053967094.
  • 39. Royakkers, L., Timmer, J., Kool, L. & van Est, R. (2018) Societal and ethical issues of digitization. Ethics and Information Technology 20, pp. 127–142, doi: 10.1007/s10676- 018-9452-x.
  • 40. Skoko, I., Lušić, Z. & Pušić, D. (2020) Commercial and strategic aspects of the offshore vessels market. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 62 (134), pp. 18– 25, doi: 10.17402/415.
  • 41. Szelangiewicz, T. & Żelazny, K. (2020) Unmanned ships – maritime transport of the 21st century. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 64 (136), pp. 14–21, doi: 10.17402/449.
  • 42. Vassalos, D. & Paterson, D. (2021) Towards unsinkable ships. Ocean Engineering 232, 109096, doi: 10.1016/j. oceaneng.2021.109096.
  • 43. Vukelic, G., Vizentin, G. & Frančić, V. (2021) Prospects for use of extended reality technology for ship passenger evacuation simulation. Scientific Journal of Maritime Research (Pomorstvo) 35(1), pp. 49–56, doi: 10.31217/ p.35.1.6.
  • 44. Xiong, J., Tan, G., Zhan, T. & Wu, S.-T. (2020) Breaking the field-of-view limit in augmented reality with a scanning waveguide display. OSA Continuum 3(10), 2730, doi: 10.1364/osac.400900.
  • 45. Xu, Z., Lu, X.Z., Guan, H., Chen, C. & Ren, A.Z. (2014) A virtual reality based fire training simulator with smoke hazard assessment capacity. Advances in Engineering Software 68, pp. 1–8, doi: 10.1016/j.advengsoft.2013.10.004.
  • 46. Zhao, X., Liu, C., Xu, Z., Zhang, L. & Zhang, R. (2020) SSVEP Stimulus Layout Effect on Accuracy of Brain-Computer Interfaces in Augmented Reality Glasses. IEEE Access 8, pp. 5990–5998, doi: 10.1109/access.2019.2963442.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94eb2960-c409-439f-b4fe-62f3108c9f6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.